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Effect of a Time-Dependent Stenosis 
on Flow Through a Tube 
A common occurrence in the arterial system is the narrowing of arteries due to the de-
velopment of atherosclerotic plaques or other types of abnormal tissue development. As 
these growths project into the lumen of the artery, the flow is disturbed and there de-
velops a potential coupling between the growth and the blood flow through the artery. A 
discussion of the various possible consequences of this interaction is given. It is noted 
that very small growths leading to mild stenotic obstructions, although not altering the 
gross flow characteristics significantly, may be important in triggering biological 
mechanisms such as intimal cell proliferation or changes in vessel caliber. An analysis 
of the effect of an axially symmetric, time-dependent groiuth into the lumen of a lube of 
constant cross section through which a Newtonian fluid is steadily flowing is presented. 
This analysis is based on a simplified model in which the convective acceleration terms 
in the Navier-Stokes equations are neglected. Effect of growth on pressure distribution 
and wall shearing stress is given and possible biological implications are discussed. 

I n t r o d u c t i o n 
IT IS WELL KNOWN that, at various locations in the 

arterial system, stenoses may develop due to abnormal intravas-
cular growths. For example, arteries may be narrowed by the 
development of atherosclerotic plaques and several investigators 
have suggested that this development is closely related to the 
hj'drodynamics of blood flow through the artery [ 1 —4].1 Numer-
ous other references can be found in the voluminous medical 
literature on atherosclerosis which refer to this aspect of the 
problem. It has been demonstrated experimentally [5, 6] that 
injury to the intima, even if it is minimal, can quickly lead to the 
development of gross lesions in the vicinity of the damaged area 
with a subsequent narrowing of the artery. Some investigators 
[7, 8, 9] have indicated that the initial injury to the artery may 
be due to localized turbulence and relatively large shearing 
stresses which occur at branches, or at any site at which the 
geometry changes in a relatively abrupt manner. 

Although the specific reason for the initiation of a growth, 
which eventually projects into the lumen of the artery, is not 
known, it is clear that if such an event occurs the flow characteris-
tics in the vicinity of the resulting protuberance may be signifi-
cantly altered. There may now take place a "coupling" between 
the development of the stenosis and the corresponding change in 
the flow characteristics. It has been suggested that a localized 
change in pressure or shearing stress [10] may trigger certain 
biological mechanisms whereby the endothelial cells lining the 
arterial wall, and subendothelial cells, proliferate with a subse-
quent narrowing of the lumen. It has been demonstrated experi-
mentally [11] that the narrowing of an artery by some external 
means can cause significant growths to develop at the artificially 
induced stenosis. In some cases cited, the vessel was almost com-
pletely occluded by the growth apparently induced by the steno-

As a stenosis develops there is the increased danger of complete 
occlusion clue to the reduced lumen. In addition, there is an in-
creased resistance to flow, with a possible corresponding reduction 
in flow to the particular vascular bed supplied by the artery. It 
is also known that at a stenosis a dilatation may develop down-
stream from the narrowed section (see, for example, reference 

[12]). Although the reason for poststenotic dilatation has not 
been definitely established, it has been attributed by some in-
vestigators to damage and weakening of the arterial wall by 
turbulence generated in the separated flow downstream from the 
narrowed lumen. 

The following list summarizes the aforementioned important 
physiological effects that may be associated with the presence of 
a stenosis: 

(а) Increased resistance to flow with possibly severe reduction 
in blood flow. 

(б) Increased danger of complete occlusion. 
(c) Abnormal cellular growth in the vicinity of the stenosis, 

thereby increasing the severity of the stenosis. 
(d) Tissue damage leading to poststenotic dilatation. 

It is the purpose of this paper to consider certain aspects of 
the fluid mechanics of the flow through a stenosis that are related 
to these effects. 

F l u i d M e c h a n i c s P h e n o m e n a 
It is certainly true that in vivo vascular lesions leading to 

stenoses are not well-defined geometrical configurations. In 
general, complex three-dimensional flow patterns are developed 
near the stenosis which are virtually impossible to analyze. In 
some instances the stenosis is known to be more "collar like" 
with some degree of axial symmetry and, for the purpose of this 
paper, it is assumed that the stenosis is axially symmetric. It Is 
envisioned that the size of the stenosis initially increases with 
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Fig. 1 Three stages of developing stenosis 
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time and eventually "stabilizes" to some fixed geometrical con-
figuration. 

During the early development of the stenosis, denoted as 
Stage I, the flow is not expected to separate from the protuberance 
[Fig. 1(a)] and the effect on the gross flow characteristics, such as 
increased pressure drop across the stenosis, • is small. As the 
growth continues into the lumen, a second stage (Stage I I ) is 
reached at which the flow separates and a laminar backflow de-
velops [Fig. 1(b)]. However, the separated region is small and 
localized. As the stenosis continues to develop, the separated 
region extends downstream and turbulence develops in the sepa-
rated region (Stage III) as illustrated in Fig. 1(c). It is assumed 
that, during the growth, the flow through the stenosis remains es-
sentially constant, and the flow preceding the stenosis is laminar. 
Since the flow through the arteries is actually pulsatile, the 
designated stage of the stenosis would be the most severe stage 
reached during a cycle. 

It is expected that, for a stenosis in Stage I or II, the most 
physiologically significant effect would be abnormal cell prolifera-
tion. A stenosis in Stage III could induce all the effects sum-
marized at the end of the preceding section. To proceed beyond 
this qualitative description of the general flow characteristics, 
numerous assumptions and idealizations must be made. 

I d e a l i z e d M o d e l 
As a first approximation to this problem, it is assumed that the 

flow is laminar and stead}', the artery is of constant diameter 
(preceding and following the stenosis), and the fluid is Newtonian 
with a constant density, p, and viscosity, p.. It is further assumed 
that the stenosis develops in an axially symmetric manner due to 
some abnormal growth over a length, 2Z0, of the artery as shown 
in Fig. 2. The rate of growth into the lumen is expected to be a 
function of time, t, and of the longitudinal coordinate, z. Specifi-
cally, it is assumed that the time rate of change of the radius Ii is 
given in the form 

dR 
iit 

= — a 0 ( TTZ \ 1 + C 0 S ^j -t/r 

for — Z„ < z < Zo, and 

dR 
dl 

= 0 

R = R0 - TOt0 (1 - e-'/T) 

where R i?o for t = 

(i?o 

0. It is noted that as t • 

- R)z.0 ->• Sm 2ra0 

R = Ro -

In dimensionless form, 

(1 
( 1 + C O S ? O ) 

JL 
Ro 

= 1 -
2 /?< 

(1 T) ( l + cosS) 

(4) 

(5) 

When t = T , the height of the growth at 2 = 0 is 

S = 0.632§,„ 

The general shape of the stenosis based 011 the preceding as-
sumptions is shown in Fig. 2. Obviously, the assumed growth 
characteristics are arbitrary and many other possibilities exist. 

L/2 L / 2 

Fig. 2 Idealized geometry for stenosis 

It should be noted that, although the stenosis varies with time, the 
variation is considered to be slow so that the flow can be assumed 
steady. Thus the fluid mechanics analysis depends only on the 
instantaneous condition of the stenosis. 

With this idealized model, the flow through the stenosis is 
governed by the Navier-Stokes equations, which for axially 
symmetric flow reduce to 

dv2 dvz 

dvr dvr 

I _l_ E 
p dz p 

_ J_ dp , JL 
p dr p 

( d-v, 1 dv, d-v,\ ^ + + (6) 

/ d\ 1 dvr dh'r jv \ 
\dr>- r dr + dz2 r* J 

(7) 

where vr and vs are the velocity components in the r and 2-direc-
tions, respectively, and p is the pressure. In addition, the con-
tinuity equation 

1 drvr dv, 
r dr dz 

= 0 (8) 

( 1 ) 

(2) 

for all other 2. The parameter, r, is the "time constant" for the 
stenotic growth and «o is a constant. Equation (1) can be in-
tegrated to give 

( l + c o s g ) (3) 

is required. 
It is well known that these equations cannot be solved in gen-

eral due to the nonlmearity of the connective acceleration 
terms. However, depending essentially 011 the size of the steno-
sis, certain terms in these equations are more important than 
others. It is therefore convenient to consider the case for a mild 
stenosis (Stage I ) and for the more severe stenosis (Stages II, III ) 
separately. 

A n a l y s i s for M i l d S t e n o s i s 
Equation (5), which defines the geometry of the stenosis, can be 

written 

J?_ 
Ro = l -

2Ro 
1 + cos 

where 5„, is the maximum projection of the stenosis into the 
lumen. Thus equation (3) can be written as 

where 

5 , „ ( l r) 

(9) 

(10) 

and represents the instantaneous maximum height of the 
growth. During the initial development of the stenosis, S/R0 

1 and vr « v!t so that the Navier-Stokes equations can be sim-
plified. The order-of-magnitude analysis given in the Appendix 
shows that, if the conditions 

8 8 R 
(a) Re 7T « 1 (b) - « 1 (c) ~ ZJQ tlQ ZJ 0 

0(1) 

are satisfied, where Re is the tube Reynolds number, then the 
governing equations can be approximated as 

dp , (dhK 1 dv, 
(ii) 

Journal of Engineering for Industry M A Y 1 9 6 8 / 249 

Downloaded From: http://manufacturingscience.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jmsefk/27523/ on 03/16/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



0 
dp 
dr 

(12) 

v. = ^ J (>'2 - R>(z)) 
4/u az 

= _ S(j, Jl 
dz tr R* 

and the wall shearing stress, r, is 

_ R_ dp 
T ~ 2 dz 

_ 4M Q_ 
IT R3 

AP = 8M<3 
7r/?o" 

Q r V 2 / / - . y dz (16) 

A P S n 
Q ~ TTffo4 

= A 

Go 

where 

G o = f i / 2 ( J L Y * 
J-L/2 U» / 

dz 

(17) 

(IS) 

and A is defined as the "resistive impedance." For classical 
Poiseuille flow, in which R = R0, it follows that Go = L, and 

A P = 
S \xL 
TTRO* 

(19) 

The subscript, P, will be used throughout to denote Poiseuille 
flow. The ratio of the impedance with the stenosis to that with-
out the stenosis is 

A 
A,. 

Go 
L 

(20) 
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Fig. 3 Variation of impedance ratio with s ize of stenosis 

The integral Go can be written 

A stenosis satisfying these conditions will be denoted a mild 
stenosis. These are the same equations as obtained for flow-
through a tube of constant diameter and can be integrated to give 

dz 

The last integral in equation (21) is essentially of the form 

dz 
(13) r: (r-/: 

i.e., the velocity distribution is parabolic at each cross section. 
This same approximation has been made in the analysis of flow 
through flexible tubes [13, 14]. It follows that 

z° (^a — b cos 

(21) 

(22) 

where 

a = 1 -
(14) 

2Ro 

b = 
_8_ 
2R0 

and can be integrated by means of the theory of residues. The 
resulting equation for the resistive impedance ratio is 

(15) 
A ^ 

A P 
= 1 

where Q is the discharge through the tube. 
The pressure drop AP across the stenosis between the cross 

sections z = ±L/2 can be obtained from the integration of equa-
tion (14); i.e., 

2 — - ( - 2 — 
L L 

X 
6«(/J« - l ) 2 

[1 - 127 + 3O72 - 2O73] (23) 

where R/Ro is given bjr equation (9). Equation (16) can be ex-
pressed in the form 

where 

and 

7 = 
-P + V f f 2 - 1 

2 V P 2 ~ 1 

The impedance can now be determined as a function of the ratios 
2Z0/Z, and S/RQ. The results are shown in Fig. 3. The curve 
labeled 2Zo/£ = 1.0 shows directly the influence of the stenosis 
on the resistance. It is noted that, for a S/R0 equal to 0.1, the 
impedance has increased over that for a constant-diameter tube 
by approximately 25 percent. The curve labeled 2JZa/L = 0.1 
Is illustrative of the fact that, if the resistance over a long segment 
of artery is considered, the effect of the stenosis is very small until 
a certain value of 8/R0 is exceeded. Beyond this critical value 
of S/Ro, the presence of the stenosis rapidly becomes significant. 
It should be emphasized that, for the mild stenosis under consider-
ation, the change in the actual pressure at a point in the artery due 
to the stenosis will still be small in comparison to the mean arterial 
pressure. 

It follows from equation (15) that the ratio of the shearing 
stress at the wall of the stenosis to that for the corresponding 
Poiseuille flow is 

T 

Tp (tr (24) 

The variation in the wall shear at the midpoint of the stenosis, r» 
(which represents the maximum variation), is given by the equa-
tion 

To 

Tp 
1 

" 3 ( I ) + 3 ( I ) 2 - ( I ) 1 
(25) 

The variation in the shear ratio with 5 /R a Is shown in Fig. 4. It is 
clearly noted from this figure that, for a given rate of flow, the 
wall shearing stress increases rapidly as the stenosis increases in 
size. For 8/Ra = 0.1, the wall shear is approximately 37 percent 
higher than the corresponding "normal" shear; for 8/R0 = 0.2, 
the increase is approximately 95 percent. If cellular growth or 
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Fig. 4 Variation of shear ratio with s ize of stenosis 
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Fig. 5 Schematic representation of developing stenosis in artery supply-
ing vascular bed 

autoregulation is sensitive to changes in the wall shearing stresses, 
it is apparent that the presence of even a mild stenosis will be 
significant. 

It is of interest to consider the changes that may occur during 
the development of a mild stenosis. An idealization of a segment 
of the vascular system is shown in Fig. 5. The artery containing 
the stenosis supplies blood to a particular vascular bed and it is 
assumed that the total pressure drop across the artery and the 
vascular bed, pi — p3, is essentially constant. The total pressure 
drop can be expressed as 

Pi — P3 = Pi — P2 + p2 — 

= (A, 2)Q + (A 23)Q 

and 

p i - V2 

V 2 — p 3 

Q 

= A n 

= A2i 

(26) 

(27) 

(28) 

The impedance, A>3, represents the effective impedance of the 
vascular bed. It is assumed that 

A23 = K ( \ n ) P 

where (An)P is the impedance of the artery supplying the vascular 
bed based on Poiseuille flow (no stenosis) and K is a constant. 
It is known that the pressure drop across the vascular bed is 
large in comparison to the pressure drop in a normal artery so 
that K » 1. 

Equation (26) can now be written as 

( A 

P i 

^ . r ^ + x i - 1 ( 2 9 ) 

- P3 L(A,. ;)p J 

0.40 060 OBO 100 The first term in brackets is the impedance ratio for the stenosis 
as given in Fig. 3. To illustrate the manner in which the dis-
charge, Q, may be altered with respect to time by the development 
of a stenosis, a specific example will be considered. Let a stenosis 
be specified for which the maximum height-radius ratio, dm/Ro, 
is 0.2, so that 

| = 0 . 2 ( 1 - « ~ ' / r ) ( 3 0 ) 
i to 

In addition, let 2Z 0 /L = 1.0 and K = 10.0. The variation in the 
discharge parameter, the left side of equation (29), can now be 
plotted versus the dimensionless time, t/r (Fig. 6). This illus-
trates the variation of Q versus time for a particular system since 
all other parameters are assumed constant. The small, and 
gradual, variation in discharge with time is noted. This result 
demonstrates that the development of a mild stenosis will have 
only a slight effect on the flow rate. The change may be com-
pletely negated by autoregulation of the impedance of the vascu-
lar bed in which K may change to maintain a constant discharge. 

Although the theoretical results discussed in this section are 
only valid for a mild stenosis, i.e., S/Ro <5C 1, the general form for 
the variation in the impedance ratio shown in Fig. 3 is expected 
to be similar for larger ratios. It is also anticipated that the 
potentially variable impedance of the vascular bed can compen-
sate for the changing impedance due to the stenosis only to some 
critical value of K. Beyond this point, the discharge will begin 
to be significantly affected by the changing stenosis so that, for a 
more severe stenosis, the variation in discharge with time may ap-
pear, as illustrated in Fig. 6. This must be considered an ap-
proximate result for 5,„/Ro = 0.8. These general trends have 
been observed experimentally [15, 16], 

The expression for the maximum wall shearing stress in the 
stenosis can be written as 

T o(Ai2)P7ri?o2 

4J"(Z>I - PS ) 
(31) 

Wall Shearing Stress ( Mild Stenosis)-

Discharge ( Mild Stenosis) 
_ L 

1.0 

Discharge {Severe Stenoeis)-

J I L 

( Stenoeis)—-j 

o.io 3 
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Fig. 6 Variation in wa l l shearing stress and discharge with time 
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(a) CYLINDER ( b ) STENOSIS 

stagnation as shown in Fig. 7(a). For a cylinder in a uniform 
stream, the critical Reynolds number for the initial separation, as 
computed from a numerical analysis [17], is approximately 5 
(where the characteristic length is the radius). At a Reynolds 
number of approximately 25, well-defined vortexes have developed 
behind the cylinder and extend downstream to form a wake. 

As outlined in Goldstein, the characteristic velocity for the 
protuberance is assumed to be given by the equation 

Fig. 7 Nomenclature for characterizing separation phenomenon 

The dimensionless shear is plotted versus the dimensionless time 
variable in Fig. 6 for the case 8m/R0 = 0.2, 2Za/L = 1.0, and IC 
= 10.0. It is observed that the shear increases rapidly with time 
although the discharge is decreasing very slowly. For t = r, 
the shear has increased approximately 50 percent whereas the dis-
charge has decreased by approximately 2 percent. 

P r e d i c t i o n of S e p a r a t i o n 
The analysis given in the preceding section is based on the con-

dition that viscous forces are much larger than inertial forces. 
For steady flow, inertial effects are due to the convective accelera-
tion terms in the Navier-Stokes equations. It is clear that, as 
the size of the stenosis increases, or as the Re3rnolds number 
increases, the importance of the inertial terms increases and they 
can no longer be neglected. Unfortunately, if these terms are 
retained, the resulting equations are nonlinear and cannot be 
readily solved. No solution to this problem which takes into 
account the nonlinear terms is available. Two important effects 
due to inertial forces are: (a) Lowered pressure at narrowed 
section of stenosis due to the Bernoulli effect; and (6) separation. 
It is thought that separation may play an important role in the 
development of the stenosis. In the separated region near the 
wall, the flow direction will actually be reversed from the main 
stream direction, thereby leading to a complete reversal in the 
direction of the shearing stresses acting on the cells lining the 
artery. For pulsating flow, it is entirely possible that at a given 
location along the wall the shearing stress will vary with time and 
alternate in direction. The importance of this phenomenon in 
cellular processes is unknown but conceivably important. 

A rough approximation of the conditions under which separa-
tion may occur can be made from an analysis given by Goldstein 
[18]. It is known that, for flow around a solid body such as an 
infinitely long circular cylinder, the condition for separation is 
characterized by the Reynolds number Ua/v, where U is the 
characteristic uniform approach velocity [Fig. 7(a)], a is a char-
acteristic length (either radius or diameter of the cylinder), and 
v the kinematic viscosity. For small Reynolds numbers, the 
separation point is near the rear stagnation point. As the Reyn-
olds number increases, the separation point moves forward and 
stabilizes at approximately 82 deg, measured from the forward 

V5 

and 
= - ( ' - ( ' - 0 1 

(32) 

for small values of 8/R0. This result is based on the following as-
sumptions: (a) The velocity distribution preceding the obstruc-
tion is parabolic; and (6) the appropriate velocity to characterize 
separation is the velocity upstream from the obstruction at a 
position corresponding to the top of the obstruction. The 
Reynolds number 

(Re)s = — 

= 4 (0 UR» 
v 

(33) 

is now defined. It is assumed that, when this Reynolds number 
reaches some critical value, RCrit, separation will occur. Thus, 
the condition for separation is 

Rcrit (34) 

The value of R c r i t must be determined experimentally. As noted 
previously, separation apparently starts at approximately 5 for a 
circular cylinder in a uniform stream. Limiting conditions for 
8/Ro and R e for various values of R0rit are given in Fig. 8. The 
approximate nature of this analysis should be recognized and 
values obtained from Fig 8 can only be used as rough estimates 
for predicting separation. It is apparent from this figure that, 
even for a mild stenosis, separation majr occur at a relatively small 
Reynolds number. For example, for 8/R0 = 0.1, the limiting 
value of the pipe Reynolds number, Re, is approximately 130 
(based on Rcrit = 5). 

D i s c u s s i o n a n d S u m m a r y 
The development of a stenosis in an artery can obviously create 

many serious problems and, hi general, disrupt the normal func-
tion of the circulatory system. In this paper, certain aspects 
of the fluid mechanics of flow through an axially symmetric 

REYNOLD NUMBER,^r 

Fig. 8 Variation of separation Reynolds number with size of stenosis 
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stenosis are considered. Flow through a tube of nonconstant 
cross section presents an extremely difficult fluid mechanics 
problem which in general has not been solved. As an initial step 
in the analysis of this problem, an approximate solution that is 
valid for a mild stenosis, having a specific, time-dependent, 
geometrical configuration, is considered in detail. Since the flow 
is treated as quasi-steady, in the sense that flow unsteadiness due 
to the time-dependent boundary condition is neglected, the 
growth of the stenosis plays no role in the fluid mechanics 
analysis. However, it should be noted that, although the growth 
rate, as characterized by the parameter, T, is not important to the 
fluid mechanics of the problem, the rates at which variables such 
as pressure and shearing stress are changing may play an impor-
tant role in certain cellular processes. By formulating the prob-
lem in terms of a time-dependent stenosis, these rates may be 
computed. 

Frequently in the study of hemodynamics, the flow is considered 
to be steady as was done in this paper. Since the flow is actually 
pulsatile, this represents a serious approximation that may lead to 
erroneous conclusions [19], The steady-flow assumption is only 
valid for the case in which the ratio of the inertial forces (due to 
the pulsating flow) to the viscous forces is small. The index for 
this ratio is the dimensionless parameter R^y/oi /v, where co is the 
characteristic frequency of the pulsations. It is expected that, 
if Ro\^oi/v is of the order of unity, then the flow can be treated as 
quasi-steady. This condition is usually only satisfied in the 
smaller arteries. Therefore, in addition to the limiting condi-
tions on the Reynolds number and stenosis geometry previously 
given, this additional restriction must also be imposed in order 
for the results presented to be applicable to the flow of blood in 
the arteries. 

It is clear that the prediction of the flow characteristics in a 
stenosis is complicated, and numerous simplifying assumptions are 
required to establish a tractable model. The results presented 
in this paper represent an initial step in the analysis of this in-
teresting problem. 
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A P P E N D I X 

The Navier-Stokes equations, equations (6) and (7), and the 
continuity equation, equation (8), are expressed in dimensionless 
form by means of the transformations 

r = R0f z = Z0S p = pU2p 

where U is a characteristic velocity in the z-direction. With these 
transformations, the dimensionless space variables and the veloc-
ity components have an order of magnitude of approximately 
unity or less. Symbolically, this order of magnitude will be de-
noted, 0(1). If the functions for Dr and vt are smooth and continu-
ous, the derivatives of the functions will also have an order of 
magnitude of unity [20]. The transformed equations of motion 
and the continuity equation become 

/8\-_ do. ( 5 \ / f l „ \ _dvt dp ( n \( 5 \ f d% 1 dv / / ? „ V d% vr 1 

U / "r 37 + U / U / ' * = " ^ \ p u r J \ Z o ) ( + 7 a7 + [ z j ^ ~ 7 ) ( 3 7 ) 
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(!) 
1 dr vr dv2 
r dr 

8 
R, 

= o (38) 

» a ) 

and the variation of the pressure in the r-direction may be 
neglected in comparison to the variation in the z-direction. The 
continuity equation indicates that, if 

The estimated orders of magnitude of the various terms in these 
equations are shown immediately under the equations. From 
equation (36), it is noted that, if 

1 Zo ^ 

Ii„ A'o <<: Ro 

Ro - « 1 

where R c = URo/v, then the inertial terms are much smaller than 
the viscous terms. Furthermore, if 

« 1 

then 

G o ) G „ ) 

Ro 
Z0 

' 0 (1 ) 

it follows that this condition is satisfied if 

8 
Ro 

« 1 

dvz 

Jz 
« 1 

Therefore, with the conditions specified, i.e., 

„ 8 Ro 8 
R c - « 1 — ~ 0(1) - « 1 

/JO "0 /To 

the governing equations, rewritten in terms of the original varia-
bles, are 

RJ « 1 

then the last of the viscous terms in equation (36) is negligible in 
comparison with the first two. For 

dp {d'"2 1 dv,\ 
Vdr2 + )• dr ) 

or 

dz 

(39) 

(40) 

(41) 

An inspection of the equation of motion for the ^-direction, equa-
tion (37), reveals that 

dp dp « dr dz 

The boundary conditions are 

vz = 0 at r = R 

and 

dv, 
— = 0 at r = 0 
dr 
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