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Abstract

Ž . Ž .The reflectance and the transmittance of dielectric glass and semiconductor silicon slabs are measured and used to
calculate, by means of an iteration procedure, the attenuation factor of each sample and the Fresnel reflectance and
transmittance of its interface. These three parameters determine the refractive index and the extinction coefficient and their
dispersion. The dispersion curves across a wide spectral range, 0.2–3 mm, are used to determine the atomic and quantum

Ž . Ž .constants of both silicon undoped polycrystalline and glass corning . q 2000 Published by Elsevier Science B.V. All
rights reserved.
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1. Introduction

The interaction of light radiation with matter yields
a great deal of information about the atomic and
molecular properties of various substances. In view
of this interaction, the light transmission through a
medium and the reflection at its boundary interfaces
are modified according to the response of the con-
stituent quantum species to the interacting photons.
In the present paper, the reflectance and the transmit-

Ž . Žtance of dielectric glass and semiconductor sili-
.con slabs are used to determine the real and imagi-

nary parts of their complex refractive index, ny ik.
Considering the incoherent interference of an infinite
number of decaying waves between the plane-paral-
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lel slab interfaces, we obtain expressions for measur-
able slab reflectance and transmittance. A new
method of data reduction based on a standard itera-
tion process is used to analyze these two parameters.
The novel features of the present technique can be
outlined as follows. First, the sample absorbance is
accurately determined by means of the iteration pro-
cess in such a way that the slab attenuation and the
Fresnel reflectance and transmittance of its interface
are separately found. Then, the extinction coefficient
is solely determined from the sample attenuation,
whereas the refractive index is obtained from a more
general formula combining the Fresnel interface re-
flectance and the extinction coefficient together. In
this manner, the anomalous dispersion of n can be
defined, for the first time to the authors’ knowledge,
in a wide spectral range extending from 0.2 to 3 mm
wavelength. The importance of finding the anoma-
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lous dispersion stems from the fact that many ab-
sorption bands can be precisely characterized in both

Ž . Ž .the infrared IR and ultraviolet UV sides of spec-
trum. It is also shown below that the steep edge on
the long-wavelength side of the k-profile obeys the
Fermi–Dirac distribution function so that the Fermi
energy can be deduced directly from the experimen-
tal data.

2. Slab reflectance and transmittance

Fig. 1 describes how light is reflected and trans-
mitted by a slab of a homogeneous solid material
having two plane-parallel faces. The ray scheme in
this figure is used to express the slab reflectance, R,
and transmittance, T , in terms of the internal and
external reflectance, R , RX , and transmittance Ts s s

and T X of the slab interfaces, respectively. Whens

white light reflected and transmitted by the slab is
analyzed by a spectrograph, fringes of equal chro-

Ž . w xmatic order FECOs 1 are produced across the
w xwhole spectrum, which becomes channelled 2 in

the form of alternate bright and dark bands. The
FECOs are inaccessible to observation whenever their

Ž .period spacing is smaller than the resolution limit
andror the sampling interval of the spectrometer.
Expressed in wavelength separation, Dl, the FECO
spacing is calculated as Dlsl2r2 nt, if the slab has
a geometrical thickness t and a refractive index n.
Estimating Dl for the samples involved below, we
find the following. For a silicon slab of ts1.085
mm, Dl changes from about 0.002 nm at ls0.2
mm where ns10 to about 0.53 nm at ls2 mm
where ns3.5. For a glass slab of ts0.920 mm,

Fig. 1. Ray tracing showing how light is reflected and transmitted
at the front and rear interfaces of a slab having a complex
refractive index, nyik, in a laboratory atmosphere having a
refractive index n . The external and internal interface reflectancea

and transmittance coefficients are differentiated by primes.

Dl changes from about 0.014 nm at ls0.2 mm
where ns1.6 to about 1.47 nm at ls2 mm where
ns1.5. Despite their disappearance, the FECOs very
significantly affect the values of R and T. To con-
sider the FECO effect, it is worth recalling that the
FECO disappearance is attributed to the fact that the
slab thickness becomes much greater than the coher-

w xence length 3 of any of the wave trains that inter-
fere inside the slab. Under this condition, an infinite
number of multiply reflected wave trains interfere
incoherently inside the slab. Therefore, we sum their
intensities rather than their amplitudes to obtain the
slab reflectance, R, and transmittance, T , in the

w xfollowing forms 4,5

h 2T T X
s sXRsR qR 1Ž .s s 2 21yh Rs

T T X
s s

Tsh . 2Ž .2 21yh Rs

The attenuation factor, h, appearing in these expres-
sions, plays an important role for it measures the
absorption coefficient, a , of a slab material having a
complex refractive index, ny ik. According to Lam-

w xbert’s absorption law 6 , the attenuation factor, h, is
defined as

hsexp ya t 3Ž . Ž .
for a slab having a geometrical thickness, t, and an
absorption coefficient as4pkrl with l being the
wavelength of the incident probe photon in free
space. The present paper is mainly intended to deter-
mine h from the measured slab R and T. Unfortu-

Ž . Ž .nately, Eqs. 1 and 2 cannot be solved for h since
they contain the unknown interface reflectance and
transmittance. These latter parameters depend on the
refractive index, n, and the extinction coefficient, k,
according to the Fresnel formulae for normal inci-

Ž w x .dence see Refs. 7,8 for example

2 2nyn qkŽ .aXR sR s 4Ž .s s 2 2nqn qkŽ .a

2 2'4n n qkaXT sT s 5Ž .s s 2 2nqn qkŽ .a

where n is the refractive index of the laboratorya
Ž .atmosphere air in which the slab parameters are
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measurable. Taking the last two expressions into
Ž . Ž .account, combining Eqs. 1 and 2 , and solving for

the interface reflectance and transmittance, we get

R
R s 6Ž .s 1qhT

2 2T s 1yh R Trh . 7( Ž .Ž .s s

A close inspection of these two equations shows
that we are confronted with a serious problem since
their right-hand sides are not free from the unknown
parameters h. To tackle this problem we adopt be-
low a procedure of data reduction based on an
iteration technique, which enables the interface coef-
ficients, R and T , and the attenuation factor, h, ofs s

the medium to be found. Our approach is based on
w xthe frequent application of the conservation law 9

R qT qA s1, 8Ž .s s t

with the absorbance, A , being a measure for thet

deviation of the sum of reflectance and transmittance
from unity. The knowledge of A leads to thet

knowledge of h. To show how h is related to A , wet

draw attention to Lambert’s absorption law

Is I exp ya z . 9Ž . Ž .0

This law describes, in its differential form, how a
relative intensity, d IrIsyad z, is regularly lost
every time when light crosses inside the medium
equal incremental pathlengths, d z. The depth, z,
inside the sample is measured perpendicularly from

w xits front interface where Is I . By definition 10 ,0
Ž t .the absorbance A sy H d I rI , across a thick-t 0 0

ness, t, of a dissipating medium. Keeping this defini-
Ž . Ž .tion in mind, we find from Eqs. 9 and 3 by

integration that

A s1yh . 10Ž .t

In this way, h can be determined, if A is known.t

The latter is simply determined from the equality
Ž .A s1y R qT , provided that R and T aret s s s s

known either roughly or precisely. This point is
discussed below in more detail.

3. Experimental measurements

In the present work, the reflectance and the trans-
mittance of two samples are used to determine their

optical constants. Corning glass is used as a typical
dielectric sample whereas undoped polycrystalline
silicon is used as a typical intrinsic semiconductor
sample. Each sample was prepared in the form of a
slab having plane-parallel faces. The slab faces were
tested for flatness and parallelism interferometrically
without the use of any coating. Reflection two-beam
interference was observed directly with the glass
slab, but in the case of silicon a master optical glass
flat was used in front of silicon faces polished for

Ž .mirror specular reflection. Monochromatic light
Ž .from a sodium lamp ls589.3 nm was used for

such tests since its coherence length of about 65 mm
was much greater than a slab thickness of about one

Ž .mm for each sample . Under this condition high-
w x w xvisibility 3 fringes of equal inclination 11,12 were

observed as long as the slab interfaces were plane
and parallel. The Fizeau fringes of equal thickness
w x11,12 were used with He–Ne laser wavelength
ls632.8 nm to detect any local deviation from
surface flatness. Surface defects less than lr10 were
detectable especially with the aid of dark fringes.
This test was performed across working areas of
9.2=15.9 mm2 for Si, and 10=10 mm2 for glass.
Our glass sample was corning type 7059 having a
geometrical thickness of 0.920"0.002 mm. Our Si
sample of 1.085"0.002 mm thickness was cut from
an undoped polycrystalline silicon rod of high purity
supplied by Wacker-Chemitronic. This Si sample
was reported by the manufacturer to have a donor
level greater than 600 V cm and an acceptor level
greater than 3000 V cm.

The reflectance, R, and the transmittance, T , of
each slab was measured to accuracy of 0.003 by
means of a computer-aided two-beam spectro-

Ž .photometer Shimadzu-3101PC UV–VIS–NIR hav-
ing a resolution limit of 0.2 nm and a sampling
interval of 2 nm. Our measurements were carried out
at 248C temperature for the spectral range 0.2–3 mm
with the incident beam making an angle of 5.0"0.18

Ž .to the normal to the slab external faces. With such
Ž . Ž .a small incidence angle Eqs. 1 – 7 derived for

normal incidence are applicable specially if we recall
that the refraction angle becomes smaller than 5
degrees inside the slab.

The results of our measurement are reproduced in
Fig. 2 for glass, and in Fig. 3 for silicon. We note in
Fig. 2 that T of the glass slab shows at both its
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Fig. 2. Measured reflectance, R, and transmittance, T , of a corning glass slab having a thickness of 0.92 mm at 248C.

extreme ends two steep depressions. At the same
positions, the reflectance, R, of the same glass slab
exhibits two shallow depressions. This behavior indi-
cates the existence of two strong absorption bands

for glass in both the IR and UV ends of spectrum.
This conclusion will be confirmed below more quan-
titatively. In Fig. 3, T of the Si slab shows abrupt
depressions in both the near IR and the UV sides of

Fig. 3. Measured reflectance, R, and transmittance, T , of undoped polycrystalline Si slab having a thickness of 1.085 mm at 248C.



( )M.A. Khashan, A.M. El-NaggarrOptics Communications 174 2000 445–453 449

the spectrum. At the same region of spectrum, R of
the Si slab steadily increases while it is exhibiting a
few narrow ripples indicating the existence of a
couple of sharp absorption bands overlapping a broad
conduction band characteristic for semiconductor

w xmaterials 13,14 . The conduction band of Si is in-
vestigated below in more detail.

4. Method of data reduction

The present work is mainly aiming at using the
Ž . Ž .spectral functions R l and T l of the slabs in

Figs. 2 and 3 to find the sample attenuation factor,
Ž . Ž .h l , and the interface reflectance, R l and trans-s

Ž .mittance, T l . These three parameters lead to thes

knowledge of the real and imaginary parts of ny ik
separately and their dispersion. This can be accom-
plished by means of an iteration procedure consisting
of the following steps. In the first step, we assume as
a first approximation that hs1. Then, we use Eqs.
Ž . Ž .6 and 7 to get rough values for R and T . Theses s

values are used in a second step to calculate from
Ž .Eq. 8 a rough value for A , which yields via Eq.t

Ž .10 a rough value for h. This h-value is used, in a
Ž . Ž .third step, to calculate from Eqs. 6 and 7 new Rs

and T values, which are used in their turn to find as

new value for h as before. This step is repeated
Ž .many times until a stationary function A l do nott

change its values appreciably as new h-values are
Ž . Ž .substituted in Eqs. 6 and 7 The stationary solution

can be easily discovered by plotting A versus l fort
Žall the preceding steps as shown in Fig. 4 for Si,

. Ž .specifically . These plots show that the curves A lt

oscillate about a stationary solution which seems to
be approached asymptotically. From a practical

Ž .viewpoint, the stationary function A l is obtainedt

when the repetition of the calculations does not lead
to A -values differing from each other by valuest

greater than 0.004. This limit is calculated from Eq.
Ž .8 as the error of A , which corresponds to the errort

0.003 of measuring either R or T by the spectro-
photometer at hand. We found that six oscillations
led to a stationary solution for Si, but in the case of
glass, only two trials led to its stationary function,
Ž .A l . The final step is to test the correctness of thet

Ž .stationary solution A l by using the correspondingt
Ž . Ž . Ž .h l , R l and T l to simulate by the aid of Eqs.s s

Ž . Ž . Ž .1 and 2 the experimentally measured R l and
Ž .T l of each slab. It is interesting to note that this

simulation was astonishingly perfect because the cal-

Fig. 4. Search for the correct absorbance, A , of a Si slab. The degree of accuracy increases from lower to higher numbers that are writtent

past each curve.
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Ž .culated and the experimental values of R l and
Ž .T l are excellently coincident for 1401 experimen-

tal points within the experimental error 0.003 of
either R or T.

5. Determination of optical constants

The knowledge of h enables the extinction coeffi-
cient, k, to be determined from the expression

ksy lr4p t lnh . 11Ž . Ž .

The relative error of k is estimated by means of this
expression

2 2 2
d k dh dl d t

s q q 12Ž .) ž / ž /ž /k h lnh l t

Ž .which follows from Eq. 11 by differentiation, as-
suming that p is a constant and the differentials dh,

dl, and dt stand for the errors of h, l and t,
respectively.

The interface reflectance R can be used to deter-s

mine the refractive index, n, of the slab material
Ž .since the Fresnel Eq. 4 is solved for n to get this

general equation

21qR 4R ks s
nsn q y . 13Ž .a ) 2 21yR n1yRŽ .s as

The refractive index has its absolute error, dn, esti-
mated by this equation

2 2 2E n E n E n
d ns d n q dR q d k) a s ž /ž / ž /E n E R E ka s

14Ž .

where dn , dR and dk are the experimental errors,a s

and the partial derivatives are determined from Eq.
Ž . Ž . Ž .13 . The results of using Eqs. 11 and 13 to find
the optical constants for glass and silicon are plotted
versus wavelength in Figs. 5 and 6, respectively.

Ž .Fig. 5. Experimentally measured dispersion continuous curves of the real and imaginary parts of the glass complex refractive index,
ny ik. The numbers indicate anomalous-dispersion branches corresponding to k-bands. The Cauchy dispersion function, which fits the
normal-dispersion parts, is represented by a dotted curve.
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Ž .Fig. 6. Experimentally measured dispersion continuous curves of the real and imaginary parts of Si complex refractive index, ny ik. The
numbers indicate anomalous-dispersion branches corresponding to partially overlapping k-bands. The Cauchy dispersion function, which fits
the normal-dispersion parts, is represented by a dotted curve. The n- and k-values of other authors are represented by circles and dashes,
respectively.

These results are obtained assuming that n s1 witha
y4 Ž . Ž .an error dn s3=10 , and Eqs. 12 and 14 area

used to estimate errors dkrks0.005 and dns
0.007.

6. Dispersion and quantum parameters of solids

The interaction of electromagnetic waves with
matter is responsible for the variation of the wave
speed with wavelength according to the dispersion

w xfunction 15–17
2

l
y1

` ž /li j2n s1q a . 15Ž .Ý i j 2
l l 1jsiq1 i j

y q 2ž /l l Qik i j

In this expression, we use the following atomic
parameters

a sr Nf l2 r2p 16Ž .i j e i j i j

r se2rmc2 17Ž .e

Q sl rdl . 18Ž .i j i j i j

These parameters have the following physical
meanings. r s2.818=10y13 cm is the classicale

radius of an electron having a charge, e, and a mass,
m, and experiencing a transition from a lower energy
level, i, to a higher energy level, j, when it absorbs a

Ž .photon associated with a transition wavelength l .i j

The atomic number density N determines the popula-
tion of the ground level, i. The oscillator strength,
f , is a fraction of N, which takes part in a giveni j

i™ j transition. The light speed in free space is
denoted as c. Q is the quality factor of the quantumi j

Ž .oscillator whose resonance or absorption band has
a peak wavelength l and a half-width dl . It isi j i j

interesting to note that both a and Q determine ai j i j
Ž .1r2maximum value, n s 1qa Q r2 and amax i j i j

Ž .1r2minimum value, n s 1ya Q r2 , of the re-min i j i j

fractive index, n, at the top and the bottom of each
anomalous-dispersion branch where lsl "dl ,i j i j

respectively. The dispersion curve of glass in Fig. 5
is noted to have 4 anomalous-dispersion branches:

Ž .two of which are deep at IR and UV ends and two
Ž .are shallow closely to the UV band . The corre-

sponding transition wavelengths are l s2763, 721,i j

358, 261 nm. Similarly, the dispersion curve of Si in
Fig. 6 has 6 anomalous-dispersion branches corre-
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sponding to transition wavelengths l s1050, 978,i j

779, 368, 346, and 233 nm. It is worth mentioning
that these wavelengths could not be deduced from

Ž .the function k l of Si unless a tedious process of
deconvolution were adopted since this function is the
resultant of a number of partially overlapping broad
Lorenzian profiles. The portions of the dispersion
curve in-between the anomalous-dispersion branches
are known to represent a normal dispersion, which
obey, as a good approximation, the Cauchy disper-
sion equation

n2 sAqBrl2 qCrl4 q . . . . 19Ž .
Ž .This function is derived from Eq. 15 , assuming that

Q tends to infinity and the resulting Sellmeieri j

function
` ai j2n s1q 20Ž .Ý 2

1y l rlŽ .jsiq1 i j

is replaced by the McLaurin expansion. In this way,
the Cauchy coefficients A, B and C are defined as

` `

2As1q a , Bs a l ,Ý Ýi j i j i j
jsiq1 jsiq1

`

4Cs a l . 21Ž .Ý i j i j
jsiq1

We found Cauchy coefficients: As2.417, Bs
1.979=104 nm2 and Cs5.174=108 nm4 for glass
and As11.402, Bs8.582=105 nm2 and Cs
3.883=1011 nm4 for Si. The Cauchy functions in
these cases are represented in Figs. 5 and 6 by dotted
curves.

There remains one more interesting point. It is
Ž .noted that the functions k l for both Si and glass

have steep edges toward the IR side of spectrum.
These edges are fitted to the Fermi–Dirac distribu-
tion function

1
F l s 22Ž . Ž .

E yEF
1qexp ž /k TB

where E is the Fermi energy, Eshcrl is theF

variable photon energy, and k T is the thermalB

energy at the moment of measuring the sample spec-
trum. Here, h is the Planck constant, k is theB

Boltzman constant, and T is the absolute tempera-

ture. We found E s1.139 eV for Si and E s4.350F F

eV for glass.
For the sake of comparison with the results of

other authors, we reproduce in Fig. 6 experimental
Ž w x. w xdata mainly Ref. 18 for Si compiled in Ref. 19

Ž .from various works circles for n, and dashes for k .
The agreement with our n-data is remarkable in the
region of normal dispersion up to ls371 nm, and
the Cauchy formula is the same for all data. There is
also a similarity between the k-profiles in Fig. 6
because their long-wavelength sides obey the

Ž .Fermi–Dirac function 22 but a higher Fermi energy
E s3.399 eV is calculated from the data of theF

other authors. In general, a significant displacement
is noted between the peaks of the k-profiles. This
displacement may be attributed to the fact that our
sample had a resistivity higher than those of the
samples of the other authors, which ranged from 10

w x w xV cm 20–22 to 1000 V cm 23 . Our experimental
data for glass are consistent also with those of other

w xauthors 24 but the present work may be considered
as the first one that calculates a Fermi energy for
glass.

7. Conclusion

Taking incoherent interference into consideration,
we adopt an iteration procedure to analyze the mea-
surable reflectance and transmittance of glass and
silicon slabs having plane-parallel faces with one-mm
thickness. The decay factor is used to determine the
extinction coefficient and the Fresnel interface re-
flectance is used to deduce the refractive index. The
dispersion of these two optical constants is used to
find the transition wavelengths and the Fermi ener-
gies.
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