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Abstract

Analytical expressions are derived that allow one to calculate the complex
refractive index of a planar slab from normal-incidence intensity refiectance

and transmittance.
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1. Introduction

For the reliable optical characterization of a thin film,
knowing the optical constants of the substrate on which
the film liss is very important. [If the substrate is a
partially absorbing slab with plane-paralle] faces, measuning its
intensity reflectance and transmittance spectra, R{2) and T (1),
with a spzctrophotometer—where A is the wavelength of light
in vacuum—-before the film deposition is a method, commonly
adopted for its experimental simplicity, of deducing the
complex refractive-index dispersion of the substrate material.

Te the author's knowledge, explicit formulae for
calculating analyrically the complex refractive index, a(A) —
ik(A), of a substrate from R(A) and T(A) have been never
reported in the literature. In some papers about thin-film
optical characterization, where the problem of finding the
optical constants of the substrate is explicitly discussed, the

solution is found by resoging 0 numercal means [1,2). In_

other papers, more focused on deriving the optical constants
of a slab from spectrophotometric measurements, an iterative
numerical procedure is adopted as a preliminary step to solving
the problem [3, 4].

The aim of this paper is to derive the fully analytical
solution to the irverse problem, indicated as (R, T) — (n, k),
consisting of finding n and & from R and T for a slab
with plane-parallel faces. The proposed analytical solution
represents a simpler way, as compared to numerical methods,
for calculating »(L) and k(A): in principle, by using the
analytical solution this task can be accomplished at any chosen
wavelength even with the help of a common pocket calculator.
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Figure 1. Fartially absorbing slab with plane-parallel faces: &,
geometrical thickness of the slab: R and T, intensity reflectance and
transmittance overall coefficients of the slab; Ry and Ty, intensity
refiectance and transmittance coefficients of a single face,

2. Reflectance and transmittance of a slab (direct
problem)

Before tackling the inverse problem, (R.T) — (k). it
is useful to first recall the equations of the direct problem,
(n, k) — (R,T), that consists of calculating the intensity
reflectance and transmittance coefficients once the optical
constants of the slab are known.

Therefore, let us consider a partially absorbing slab with
plane-parallel faces immersed in air (figure 1) and assume
normal incidence of hight. Let n(A) — ik(L) be the complex
refractive index of the slab. The intensity reflectance and
transmittance coefficients of each slab face, Re(A) and TF(A).
are! (the explicit dependencze on 2 is omitied for the sake of

! Motz thatin [3] and [4] an expression different from equation | 2) is utilized

for the intensity transmittance of the skab face. As one can verifly, that
expression [3,4] leadsto Bp 4T > 1 fork > 0, and this is clearly unrealistic.
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The above equations keep true both for light incidence from air
and from inside the substrate, and their sum gives Rp+Tf = 1,
as one can verify, which represents energy conservation at the
slab face. However, the validity of this energy-conservation
rule and the definability of the intensity reflectance Ry itself
for the incidence of light from inside the slab would deserve
a discussion of its own, because the reflected wave couples
with the incident one for incidence from inside an absorbing
medium [6]. For this reason, the use of Ry (for incidence of
light from inside the slab) in any theory should be limited to
slab materials which are only partially absorbing (e.g. dielec-
tric materials): by explicitly writing the expression for Rg+Tp
given in reference [6], it can be demonstrated that the above
energy-conservation law is approximately true when &* < m.
Hence defining Rf in such cases is commonly accepted.

The overall reflectance and transmittance coefficients of
the slab, B(A) and T(L), can be calculated from eguations (1)
and (2) with infinite summations over the multi-reflected
contributions of the faces. = The slab is assumed to be
optically thick, i.e. its geometrical thickness, h, is much
larger than the cobersnce length of light, so that optical
interference among multi-reflections is averaged out [7] and
incoherent summations of the mulii-reflected intensities can
be considered [6]. Setting er(L) = 4w k(L)/4 as the absorption
coefficient of the slab material, it ensues that

=
R = Re + ReTexp(=2ah) ) [Rrexp(—ah)™  (3)
=il
o2
T = T exp(—cth) Z[H; :xp{w—r:.&}]z"' (4)
m=0
from which, recalling that
i 1
" =— (5)
m=0 1 R q
for |g| < 1, one gets [7]
© ReTE —2eh
BBt -"r‘;LH (6)
| — Ryexp(—2ah)
Eric ] " T2exp(—ah
= £ exp( ) @

"~ 1-— Riexp(-2ah)’

The above equations (6) and (7), through equations (1) and (2},
represent the solution to the direct problem (n, k) — (R, T).

3. Complex refractive index of a slab (inverse
problem)

3.1, Step 1: deducrion nf Re and uhﬁn;n RandT

To find the solution to the inverse problem, (R, T) — (n, k),
which consists of calculating r and k from R and T, let us first

derive Ry and @h from R and 7. Therefore, let us rearrange
equation {5) as follows:

ReTEexp(—2ah
Rk = T exp(—2ah)

~ 1= RIexp(—2ah)’ -8

Mow, by dividing equation () by equation (7), and then taking
the natural logarithm of the result, one gets

ReT
E=1 ;
= "(R—RF)

By substimuting equation (9) into equation (7) and using Tr =
1 — R, the following second-degree algebraic equation in the
unknown R g is obtained:

(%

Q—RR:—R+T*—(1-RFIRF+R=0  (10)
whose only acceptable solution is
Re=(2+T =(1=-RP={2+T=(1 - R}

—4R2 - RN')22 - R (1n

The other mathematical solution to equation (107, which differs
from equation (11) in the opposite sign in front of the square
roct, cannot be accepted because, as one can verify, it would
lead to R g values such that R 2 R, and this would contradict
equation (3). ;

MNote that, in equation (11), Rr is expressed in terms
of R and T only, and one can show this fact by writing
Rr = Re(R,T), where the wavelength dependence through
R({A) and T(A) is understood. Once Ry has been found
by means of equation (11), its value can be substituted into
equation (9) to find erh as a function of R and T (however, we
do not report here the fully explicit expression of ah for the
sake of brevity).

3.2. Some useful relationships for n and k

Mow, it is useful deriving some relationships for the real and
imaginary parts of the complex refractive index, n and k.

Let us write the complex refractive index of the slab
material in polar form, ie.

n — ik = pexplig) (12}

where p and ¢ are univocally determined real-valued functions
of L. By using this polar form, from equations (1) and (2), after
some mathematical rearrangements. one has

|,=:|1::a]:n,’m‘.|]||-:-It“=_rf-i.'-2,||:n:n:|sq'ﬁ--:-I=::__ﬂ (13)
T F
£ 4
lpexplid) — 1] = p* — 2pcosg +1 = r;,R‘r. (14)
F

By adding and subtracting the above two expressions, one gets
the following equations:

5 1+ R

pzznl_ﬁ_r*x (15)
COR (16)
Ji
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1000 - . - - monotonically decrease with Re. By a close inspection of
figure 2, one concludes that selecting the proper solution for
100 n (ie. n,orn.)on physical grounds should be relatively
straightforward in most cases.

10 In equation (20), the positiveness of the expression under
= the square root is assured by equation (18). On the other hand,
1=l imposing the positiveness of the expression under the square
o ool in equation (19) and the positiveness (for physical reasons)
S g1l of k leads to the following bounds for k:

/2
0.01} 0<k< e : (22)
1= Ry
e 02 To:  0s 08 10 Incidentally, the right-hand member of this last condition also
'HF sets a mathematical lower limit to the slab thickness, Asa

Figure 2. Dependence of n, (branches with de/dRr > 0) and n_
(branches with dn fd R < 0) on the refiectance R of a single face
of the slab for some values of the extinction coefficient . The loci
where the two branch families meet are described by the formula

me = (1 + Re)/C1 — RE).

where T = 1 — Ry has been utilized. By comparing
equations (15) and (16), the following result for cos ¢ can be

writien:
n

—_— 17
{2!:% — 1312 an

cosg =
Because ¢ is real-valued, |cos¢] = 1. Hence the following
bounds can be established for n from equation (17) afier some
mathematical manipulations:

1 1

poR 1+R}? %)
12 I

1+ Ry 1— R}

Since p* = n” + &7, one gets from equation (15) the
following expressions for n and k (we retain, for k, only the
positive square root for physical reasons):

i 172
1:=n=—1+RFi[ S ,—.ﬁ'l] (19)
(1= Re)
1+R =
I:=[2n R” —(n=+1)] .

(20)

e
1—Rr

In principle, both the solutions reported in equation (19),
n, and n_, are mathematically acceptable, and the proper
solution has to be selected on physical grounds. One can notice
that the solution n, is usuzlly the best candidate for dielectric
materials (k < n, n = [ becausa

g

I-EF
= — > e
=R

e = ] (21)
T+-REZ

| n_

when k* <« 4R f(1 — R£)*. On the other hand, if &?
4R /(1— ReT. the two solutions coincide and are n, = 1
(1+ Re)/(1 — Rf).

Figure 2 shows the dependence of n, and n_ on the
face reflectance Rp, for some representative values of &, as
caleulated by equation (19). In this figure, the n, branches
can be distinguished from the n_ branches because the former
ones monotonically grow with Rg, while the latter ones

I
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matter of fact, considering that k = Le/(4:x) and equation (9),
one gets

(23)

L1—R
i Fln(

ReT
4n g2 3

R —Rg

However, in most cases this lower limit represents a very small
thickness value, i.e. of the same order of magnitude as A.

3.3. Step 2: deduction of n and k from Rr and ach

The final expression for the extinction coefficient of the slab,
k = k(R, T), can be simply obtained from equation (9) by
considering that @ = 4wk /L. The slab geometrical thickness,
k. is assumed as known. One gets

Re(R,T)T ]

kR T)= = 2
S e n[R—RF{R.T} el

Here, too, the wavelength dependence through R(A) and T (A1)
is understood besides the explicit dependence through the
factor i f(4xh). Inthe above equation, k is calculated from R
and T (also through equation (11)), k and A being considered as
parameters; this fact has been shown by writing k£ = k(R. T).

Now, equation (24) can be substituted into equation (19)
1o also deduce the real part, n, of the complex refractive index.
Therefore, the final expression forn = n(R. T) is

I+ Rr(R.T) 4Rp(R.T)
1 —Re(R,T) [1—Re(R, T

- (L)zl z[ Re(R.TIT 11"
amn) " | R- Rp(R.T‘.r” ;

Equations (24) and (25), together with equation (11),
represent the searched analytical solution to the inverse
problem (R,T) =+ (m.k).__The proper refractive-index
solution, n, or n_, has to be selected by referring to physical
considerations, as previously discussed.

n:(R,T)=

(23)

4. Application to a real case

Az an example application, a real slightly absorbing sample
was characterized with the proposed method. The sample was
a grey glass for architectural applications having geometrical
thickness k = (4.9 £ 0.1) mm. The intensity reflectance and
transmittane spectra of the sample, R(A) and T (1), are shown
in figure 3 and were measured with a Perkin-Elmer Lambda 19
spectrophotometer.  The wavelength resolution (bandwidth)
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Figure 3. Measured intensity reflectance (left scale), R(X), and

transmittance (right scale), T(A), of a grey glass for architectural
applications. The error bars represent measurement uncenainties.
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Figure 4. Refractive-index dispersion curve of the grey glass as
calculated by equation (25). The ermor bars were evaluated with
standard error propagation analysis.

was AL = 1 nm over all the examined spectral range. for
which a maximum coherence length of light of about 630 pm
was estimated. This ensures that the glass can be considered
as optically thick.

The refractive-index and extinction-cocfficient dispersion
curves of the sample, shown in figures 4 and 5, were calculated
by using equations (25) and (24), respectively. Between the
two solutions available for the refractive index, the m,(i)
solution was selected as the physically comect one over all
the considered spectral range because n_(A) < 1, which is

unrealistic for a glass. The curves shown in figures 4 and 5 -

were checked for correCiness by calculating from them the
overall intensity reflectance and transmittance spectra with
equations (6) and (7), and then comparing these calculated
specira with the measured ones. The reproduction of the
measured spectra was completely successful.

5. Conclusions
The analytical solution found in this paper represents a useful

aliemative to numerical methods te deduce the complex
refractive index of a slab from reflectance and transmittance

exlinction coallclant
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Figure 5. Extinction-coefficient dispersion curve of the grey glass
25 calculated with eguation (24). The error bars were evaluated with
standard error propagation analysis.

measurements. Besides the obvious advantages of using an
analytical solution with respect 1o a numerical one, it has
been shown that the inverse problem, (R.T) — (n,k).
admits two sets of mathematical solutions, i.e. (n,, k) and
(ri_. k); the proper set has to be selected according to physical
considerations.  Moreover, the intervals mathematically
and physically available to n and & have been deduced
(equations (18) and (22)). Considering the bounds of these
intervals could become useful when trying at least 1o state
acceptable ranges for n and k in difficult cases, such as for the
analysis of almost opaque substrates for which T is comparable
with the instrumental sensitivity.
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