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Objective

A HeNe laser beam incident on a sample of
micron-sized spheres suspended in water scat-
ters into a random pattern of spots of varying
size, shape, and intensity. The pattern results
from the coherent superposition of the outgo-
ing waves scattered from the spheres. Because
the spheres are in constant Brownian motion,
the pattern randomly changes in time. A pho-
todetector is placed in the pattern and the
random fluctuations in the light intensity are
measured and analyzed. The signal’s autocor-
relation function and power spectrum are com-
puted and used to verify the Brownian motion
and determine the spheres’ diameter.
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Introduction

Scattering experiments can provide a wealth
of detailed information about the structural
and dynamical properties of matter. Dynamic
light scattering, in particular, has important
applications in particle and macromolecule
sizing and brings in another important topic in
physics: Brownian motion. We begin with a
brief discussion of Brownian motion and dy-
namic light scattering before describing the
apparatus and measurements.

Brownian motion

Brownian motion refers to the random diffu-
sive motion of microscopic particles suspended
in a liquid or a gas. This motion was first
studied in detail by Robert Brown in 1827
when he observed the motion of pollen grains
in water through his microscope. More sys-
tematic studies found the motion depends on
particle size, liquid viscosity and tempera-
ture and around 1905 Albert Einstein and M.
Smoluchowski independently connected Brow-
nian motion to the kinetic theory.

Before considering Brownian motion, let’s
first recall certain aspects of the kinetic the-
ory for the molecules of the suspension liquid.
These molecules are in constant thermal mo-
tion having a Maxwell-Boltzmann velocity dis-
tribution. This distribution gives the proba-
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bility for the molecule to have a velocity be-
tween vx and vx + dvx as

dP (vx) =

√
m

2πkBT
e−mv2

x/2kBT dvx (1)

where m is the molecular mass, kB is Boltz-
mann’s constant, and T is the temperature.
Of course, analogous expressions apply to the
y- and z-components of velocity. Equation 1
is a Gaussian probability distribution with a
mean of zero and a variance of kBT/m.

We will use a shorthand notation

N(µ, σ2) (2)

to express a Gaussian distribution of mean µ
and variance σ2 and, for example, the equation

vx = N

(
0,

kBT

m

)
(3)

will be a shorthand notation expressing that
the x-component of velocity for a suspension
molecule is a sample from the probability dis-
tribution of Eq. 1.

The equipartition theorem states that each
degree of freedom must have an average en-
ergy of kBT/2. For the translational degree of
freedom in the x-direction this implies:

1

2
m

〈
v2

x

〉
=

1

2
kBT (4)

where the angle brackets 〈〉 indicate tak-
ing an average over the appropriate proba-
bility distribution. For example, with the
Maxwell-Boltzmann probability distribution
for vx (Eq. 1),

〈
v2

x

〉
=

√
m

2πkBT

∫ ∞

−∞
v2

xe
−mv2

x/2kBT dvx (5)

which gives 〈v2
x〉 = kBT/m, and is clearly con-

sistent with Eq. 4.

Numerical solutions to the motion of a par-
ticle typically begin with Newton’s second law
cast in the form:

dr(t) = v(t)dt (6)

dv(t) =
1

M
F(t)dt (7)

where M is the particle mass, r(t) is its po-
sition, v(t) is its velocity, and F(t) is the net
force on the particle. One chooses some small
but finite dt over which r(t) and v(t) can be
assumed constant. F(t), which may depend
on r and v, is evaluated and the right sides
of Eqs. 6 and 7 are calculated. With the left
sides defined by

dr(t) = r(t + dt)− r(t) (8)

dv(t) = v(t + dt)− v(t) (9)

the right-side values are then added to the
values r(t) and v(t) to obtain updated values
r(t+dt) and v(t+dt) at a time dt later. Start-
ing from given initial conditions for r(0) = r0

and v(0) = v0 at t = 0, the process is repeated
to obtain future values for r(t) and v(t) at dis-
crete intervals. As we will see, this modeling
of the equations of motion is particularly ap-
propriate for Brownian motion.

The motion is said to be deterministic when
F(t) can be precisely determined from the val-
ues of r(t), v(t), and t. For example, in a colli-
sion between two particles with a known inter-
action (such as the Coulomb or gravitational
force) F(t) is deterministic and the motion is
quite predictable.1

For Brownian motion, F(t) arises from the
continual collisions of suspension molecules
against the particle. Each interaction with a
suspension molecule during a collision delivers

1Deterministic does not always mean predictable.
Some perfectly precise forms of F(t) lead to chaotic
solutions that cannot be predicted far into the future
at all.
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an impulse to the particle

Ji =
∫

Fi(t)dt (10)

where Fi(t) is the force on the particle and the
integral extends over the duration of the col-
lision. The individual impulses Ji vary in size
and direction depending on the speeds and an-
gles involved in the collision. Velocities vary
according to the Maxwell-Boltzmann distribu-
tion and average around 600 m/s for room
temperature water. Collisions are short and
frequent, occurring around 1019 times per sec-
ond for a 1 µ particle in water. The random-
ness of the individual collisions leads to a net
force that includes random components and
the force and motion are said to be stochas-
tic. The motion of a single particle is unpre-
dictable and only probabilities or average be-
havior can be determined.

Because of the high collision frequency, we
can choose a time interval dt short enough that
r(t) and v(t) do not change significantly, yet
long enough to include thousands of collisions.
Over such an interval, the value of F(t)dt in
Eq. 7 would properly be the sum of all im-
pulses delivered during the interval dt

F(t)dt =
∑

i

Ji (11)

With enough collisions, the central limit the-
orem can be used to draw important conclu-
sions about the form of F(t)dt even though
detailed knowledge of individual impulses is
lacking.

The central limit theorem states that the
sum of many random numbers will always be
a Gaussian-distributed random number. More
specifically, it states that if each of the individ-
ual random numbers are from a distribution
(which need not be Gaussian) having a mean
µi and variance σ2

i , then the sum of N such
random numbers will be a random number

from a Gaussian distribution of mean µ = Nµi

and variance σ2 = Nσ2
i .

Each cartesian component of Ji can be as-
sumed to be a random number from some (un-
known) distribution and thus the central limit
theorem applies to each component of Eq. 11.
Remember, v(t) and r(t) do not change sig-
nificantly over the interval dt; the probability
distributions for the components of Ji arise
from the distribution of velocities for the sus-
pension molecules and from the distribution of
collision angles. Moreover, because the num-
ber of collisions N over a time interval dt will
be proportional to dt, the central limit theo-
rem implies that each component of F(t)dt will
be a random number from a Gaussian distribu-
tion having a mean and variance proportional
to dt.

Shortly after Einstein’s work on the subject,
Paul Langevin hypothesized that F(t)dt can
be expressed

F(t)dt = −αv(t) dt + F(r)(t) dt (12)

The viscous drag force −αv, opposite in di-
rection and proportional to the velocity, had
already been investigated by Stokes, who
showed that the drag coefficient for a sphere
of diameter d in a suspension of viscosity η is
given by

α = 3πηd (13)

F(r)(t) is the random part of the collisional
force, which Langevin successfully character-
ized and showed how it was responsible for
Brownian motion.

Keeping in mind that any random number
from a distribution with a mean µ and vari-
ance σ2 can be considered as the sum of the
mean and a zero-mean random number having
a variance σ2

N(µ, σ2) = µ + N(0, σ2) (14)

allows one to see how Eq. 12 is related to
Eq. 11 and the central limit theorem. Each
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cartesian component of the −αv dt term in
Eq. 12 is the mean of the sum in the cen-
tral limit theorem applied to that component
of Eq. 11. With the means accounted for
by the −αv dt term, each component of the
F(r)(t)dt term must be a zero-mean, Gaussian-
distributed random number providing the ran-
dom or distributed part of the central limit
theorem.

After enough collisions, the probability dis-
tribution for the particle velocity must become
independent of any initial velocity and equili-
brate at the Maxwell-Boltzmann distribution.

Exercise 1 Determine the room temperature

rms velocities (
√
〈v2〉) of water molecules and

of 1 µ diameter spheres in water. Assume the
spheres have the density of water.

Of course, it is the random collisions with
the suspension molecules that will establish
the particle’s velocity distribution. In the
Langevin model, the F(r)(t) dt term will be re-
sponsible for establishing it. The fluctuation-
dissipation theorem describes how this hap-
pens and implies that over any interval dt

F (r)
x (t)dt = N(0, 2αkBT dt) (15)

This equation also holds for the y and z-
components. It specifies the variance of the
random term in terms of the temperature of
the suspension and the drag coefficient.

Note that the mean, or −αv dt term, is pro-
portional to dt as required by the central limit
theorem. Note also that the random F(r)(t)dt
term also satisfies the theorem in that its vari-
ance is proportional to dt. Actually, these two
proportionalities are required if Eqs. 6 and 7
are to give self-consistent solutions as the step
size dt is varied.

Exercise 2 When solving differential equa-
tions numerically, the time step dt must be

chosen small enough that r(t) and v(t) make
only small changes during the interval. How-
ever, dt must not be made too small because
roundoff and other numerical errors occur with
each step. Often, one looks at the numerical
solutions for r(t) and v(t) as the step size dt
is decreased, choosing a dt where there is little
dependence on its size.

Why do the mean and variance of F dt have
to be proportional to dt in order for the equa-
tions of motion to be self consistent? Your
answer should take into account how the sum
of two Gaussian random numbers behave (on
average) and how v(t) (on average) would
change over one interval dt or over two in-
tervals half as long.

We will take initial conditions at t = 0 of
r(0) = r0 and v(0) = v0. Thus, the solu-
tion will start with a well defined position and
velocity. However, the nature of the stochas-
tic force implies that the particle position and
velocity for t > 0 will be probability distribu-
tions that change with time. The references
show how to get them. Here, they are simply
presented without proof.

With analogous solutions for the other two
velocity components, the solution for vx(t) can
be written

vx(t) = N

(
v0xe

−t/τ ,
kBT

M
(1− e−2t/τ )

)
(16)

where

τ =
M

α
(17)

As required at t = 0, Eq. 16 has the value
vx(0) = N(v0x, 0) (i.e., the sure value v0x).
And at t = ∞ it has the solution vx(∞) =
N(0, kBT/M), i.e., the Maxwell-Boltzmann
distribution. Keep in mind that t = ∞ is re-
ally t À τ and τ is a very short; for a 1 µ
particle in water, τ ≈ 50 ns. Note how τ in
Eq. 16 describes the exponential decay of any
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initial velocity and (within a factor of two)
the exponential approach to the equilibrium
velocity distribution.

The probability distribution for the position
r(t) is slightly more complicated. With analo-
gous solutions for y(t) and z(t), the result can
be expressed

x(t) = N(µx, σ
2) (18)

where

µx(t) = x0 + vx0τ(1− e−t/τ ) (19)

and

σ2(t) =
2kBT

α

[
t− 2τ(1− e−t/τ ) (20)

+
τ

2
(1− e−2t/τ )

]

For a particle released from rest at the origin
(r0 = 0, v0 = 0), the equilibrium position
distribution then becomes

x(t) = N(0, σ2) (21)

where

σ2 =
2kBTt

α
(22)

Note that important result that the variance
of the distribution grows linearly with time.

Recall that Eq. 21 means that the probabil-
ity for the particle to have a x-displacement
from x to x + dx is given by

dP (x) =
1√

2πσ2
e−x2/2σ2

dx (23)

The probability for the particle’s displacement
to be in a volume element dV = dx dy dz
around a particular value of r is the product
of three such distributions—one for each di-
rection x, y and z. Using r2 = x2 + y2 + z2,
the product becomes

dP (r) =
1

(2πσ2)3/2
e−r2/2σ2

dV (24)

Consider a large number N of particles
placed at the origin at t = 0. According to
Eq. 24, each will have the probability dP (r)
to be in the volume element dV located at
that r. Consequently, the number of parti-
cles in that volume element will be NdP (r)
and their number density would be given by
ρ(r) = NdP (r)/dV or

ρ(r, t) =
N

(2πσ2)3/2
e−r2/2σ2

(25)

where the (implicit) time dependence arises
because σ2 grows linearly in time via Eq. 22.

The particles would spread according to
Eq. 25 with Eq. 22 until they start to reach
the container walls and would continue moving
from regions of higher concentration to regions
of lower concentration until they are uniformly
distributed throughout the suspension. Fick’s
second law of diffusion describes how ρ(r) will
change in time.

dρ

dt
= D∇2ρ (26)

where D is the diffusion constant describing
the speed of the diffusion process. Einstein
realized how Fick’s second law is related to
Brownian diffusion and was the first to relate
D to σ.

Exercise 3 Show that ρ(r, t) satisfies Eq. 26
with

σ2 = 2Dt (27)

Substituting Eq. 22 with Eq. 13 into Eq. 27
leads to the Stokes-Einstein relation

D =
kBT

3πηd
(28)

Exercise 4 Eq. 27 says the width of the parti-
cle distribution increases with t. Qualitatively,
this behavior is reasonable because with more
time for the random Brownian motion, one
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Figure 1: Upper figure: Coherent scattering. In-
cident plane wavefronts (dotted lines) traveling in
the direction of wave vector ki initiate scattered
spherical wavefronts (dotted circles) from parti-
cles in the scattering volume. In the direction kf ,
where the detector will be placed, is shown scat-
tered waves from two particles interfering. Lower
figure: If the detector is far from the volume, the
path length difference CPD − AOB determines
the phase of the electric field oscillations at the
detector from the wave scattered from a particle
at rj .

would expect the values of r to become more
spread out. Explain in a similar qualitative
way why the width of the distribution would be
expected to increase with T and decrease with
η and d as predicted by Eq. 28.

Dynamic light scattering

Consider first the idealized scattering prob-
lem shown schematically at the top of Fig. 1.
A monochromatic plane wave travels in a
transparent liquid extending throughout all of
space. Identical micron-sized spheres undergo
Brownian motion within a small volume V and
scatter the incident wave. Far from the vol-
ume, the radiation scattered from each sphere

is well approximated by an outgoing spheri-
cal wave, and the electric field at the detector
will be the sum of the spherical waves from all
spheres.

The outgoing spherical wave from a single
stationary sphere would produce a simple si-
nusoidal variation of the electric field strength
at the detector

E0e
i(φ−ω0t) (29)

where complex notation is used in which phys-
ical quantities are obtained as the real part of
complex expressions, e.g., the real electric field
strength above would be E0 cos(φ−ω0t). The
angular frequency of oscillations ω0 is the same
as that of the incident plane wave. E0, the
amplitude of the oscillation at the detector, is
proportional to the amplitude of the incident
plane wave, and depends on various properties
of the sphere and the medium (e.g., their po-
larizability) as well as the incident wave’s po-
larization and the scattering angle. Also, since
it arises from a spherical wave originating from
the sphere, E0 is inversely proportional to the
distance between the sphere and the detector
(inverse square-law for the field intensity). If
the detector is far from the scattering volume
(compared to the volume’s dimensions), the
variations in the amplitude from spheres at
different distances is negligible. Thus, if all
spheres are identical (as in this experiment),
and light at a single scattering angle is de-
tected, E0 can be taken as a constant for all
spheres. However, the phase φ is very sen-
sitive to the position of the sphere and can
change by 2π as the sphere moves as little as
a wavelength. Variations in φ as the spheres
move are, in fact, the source of the intensity
variations measured in this experiment.

To see how this comes about, we will first
need an expression for the phase φj in terms
of the position vector rj of the jth sphere.
We may arbitrarily take φ = 0 for a sphere
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at some arbitrarily chosen origin within the
scattering volume (O in Fig. 1). Then, the
phase of a wave from a sphere located at rj

would be 2π/λ (where λ is the wavelength in
the medium) times the path length difference
between a wave scattered from the origin and
one scattered from rj. If the detector is far
from the scattering volume V , the geometry is
as shown in the lower part of Fig. 1 and gives

φj =
2π

λ
(CPD − AOB) (30)

Exercise 5 Show that the equation above can
be rewritten

φj = (ki − kf ) · rj (31)

where ki and kf are the incident and scattered
wavevectors, respectively.

The wavevector ki points in the direction of
the incident plane wave and kf points in the
direction of the outgoing waves (toward the
detector) and both have the same magnitude

k =
2π

λ
(32)

where λ is the wavelength in the medium.

To do the exercise, redraw the figure and
add perpendiculars from O to the line CP la-
beling the intersection point C ′ and from O to
the line PD labeling the intersection point D′.
The path length difference is then C ′P +PD′.
Then relate these two distances to rj and the
wavevectors ki and kf .

Introducing the scattering vector K,

K = ki − kf (33)

φj can be written simply as

φj = K · rj (34)

Exercise 6 Draw a vector diagram showing
the relationship between ki, kf and K label-
ing the scattering angle θ between the incident
and scattered wavevectors and show that the
magnitude of K is given by

K = 2ki sin

(
θ

2

)
(35)

The total electric field is the sum of the elec-
tric field from all spheres

E(t) =
N∑

j=1

E0e
i(φj(t)−ω0t) (36)

where the sum is over all N illuminated
spheres. The intensity I(t) is proportional
to the square of the electric field I(t) =
β|E(t)|2 = βE(t)E∗(t)

I(t) = βE2
0

∑

j

∑

k

ei(φj(t)−φk(t)) (37)

Note that a time dependence has been added
to φj in these equations. This is because the
spheres randomly diffuse, and as rj varies, so
too do the φj—through Eq. 34. Thus E(t)
and I(t) are random variables and cannot be
explicitly determined.

This does not mean that we cannot obtain
useful quantities related to the random vari-
ables E(t) and I(t). Two related quantities
describing a variable which varies randomly in
time are its power spectrum and its autocor-
relation function.

The power spectrum of a time-varying sig-
nal V (t) is defined in terms of the Fourier
transform V̂ (ω) of V (t)

V̂ (ω) =
∫ ∞

−∞
V (t)eiωtdt (38)

The power spectrum S(ω) is defined by

SV (ω) = lim
T→∞

1

2T
V̂ (ω)V̂ ∗(ω) (39)
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The limiting procedure and the factor 1/2T
arise because V (t) is not square integrable.2

The autocorrelation function of a signal
V (t) is defined

RV (∆t) = lim
T→∞

1

2T

∫ T

−T
V ∗(t)V (t + ∆t)dt

(40)
This is often written

RV (∆t) = 〈V ∗(t)V (t + ∆t)〉 (41)

where the angle brackets indicate the time av-
erage given explicitly in the prior equation.

Thus RV (∆t) is the time average of the
product of a signal with its value a time ∆t
later. For ∆t = 0, it is the mean squared sig-
nal. RV (∆t) would decrease as ∆t increases
if the correlation of the signal with its value
at later and later times decreases. Keep in
mind that averaging times will need to be
long—several minutes—to get good results in
this experiment. However, the autocorrelation
function will actually go to zero quickly—for
∆t ¿ 1 s.

Calculation of the Autocorrelation
Function

The autocorrelation function for the intensity
I(t) would then be RI(∆t) = 〈I∗(t)I(t + ∆t)〉.
With I(t) given by Eq. 37 (and using rule 1
below) it becomes

RI(∆t) = β2E4
0

∑

j

∑

k

∑

l

∑
m

(42)

〈
e−i(φj(t)−φk(t))ei(φl(t+∆t)−φm(t+∆t))

〉

Note that

1. The average of a sum of terms is the sum
of the average of each term.

2For a more complete discussion of this detail see
Born and Wolf Principles of Optics pp. 497ff.

2. The average of a product of terms is the
product of the average of each term if each
term is uncorrelated with the others.

3. The motion of one sphere is uncorrelated
with the motion of any other sphere.

4. The average value of eiφj(t) is zero be-
cause the sphere’s move randomly over
large distances compared to a wavelength
within the averaging time.

Rule 4 is perhaps the most difficult and im-
portant to appreciate. According to Eq. 34
φ(t) = K · r(t) and according to Eq. 35 the
magnitude of K is on the order of ki = 2π/λ.
Over the averaging time, the particle wanders
around in Brownian motion and its displace-
ment r(t) moves through distances of many
wavelengths λ. Consequently, φ(t) will vary
through many cycles of 2π and because eiφ =
cos φ+i sin φ, both its real and imaginary parts
will vary through many oscillations. Finally,
because the average of a sine or cosine func-
tion over many oscillations is zero, we get rule
4.

Rules 2-4 ensure that any jklm term in
Eq. 42 will time average to zero if one index is
different from the other three. Thus, the only
non-zero terms will be those in which pairs of
indices are equal. There are three such cases:
1) j = k and l = m, 2) j = l and k = m, and
3) j = m and k = l.

Letting N represent the number of illumi-
nated spheres, there are N2 pairs for case 1.
With j = k and l = m it is easy to see that
the exponential factor is unity for all of them.

There are N2 − N terms for case 2 where
j = l and k = m, but j 6= k. (the N terms
with j = k = l = m have already been counted
in case 1). Each such term’s exponential factor
becomes

S2 =
〈
e−i(φj(t)−φj(t+∆t)ei(φk(t)−φk(t+∆t))

〉
(43)
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There are also N2−N terms for case 3 where
j = m and k = l, but j 6= k, and each term’s
exponential factor becomes

S3 =
〈
e−i(φj(t)+φj(t+∆t))ei(φk(t)+φk(t+∆t))

〉
(44)

Since different spheres’ (j and k) motions
are uncorrelated, the two exponential factors
in S2 and S3 are independent and the average
of their product is the product of their average.
In both S2 and S3, the two factors are complex
conjugates of one another giving

S2 = s2s
∗
2 (45)

S3 = s3s
∗
3 (46)

where

s2 =
〈
e−i(φ(t)−φ(t+∆t))

〉
(47)

s3 =
〈
e−i(φ(t)+φ(t+∆t))

〉
(48)

and the subscripting has been dropped as the
average is over a single sphere.

Using Eq. 34 to substitute for each φ then
gives

s2 =
〈
e−iK·(r(t)−r(t+∆t))

〉
(49)

s3 =
〈
e−iK·(r(t)+r(t+∆t))

〉
(50)

We define

∆r(t, ∆t) = r(t + ∆t)− r(t) (51)

as the change in position or displacement of a
sphere over the time interval from t to t + ∆t.
Using it to eliminate r(t + ∆t) gives

s2 =
〈
eiK·∆r(t,∆t)

〉
(52)

s3 =
〈
eiK·(2r(t)+∆r(t,∆t)

〉
= 0 (53)

Note how r(t) cancels out in s2 but not in
s3. Hence, the s3 term is zero for the same
reasons that justify rule 4. Rule 4 does not
apply to s2, however, because the variations

in the exponent of that term are due to varia-
tions in ∆r(t, ∆t) which is the displacement of
the particle from t to t + ∆t. As one averages
over the time t, ∆r(t) will not vary over many
wavelengths, at least not for small enough de-
lay times ∆t. If ∆t is taken large enough,
s2 will, in fact, go to zero. However, this is
precisely what this experiment is designed to
determine.

The time average appearing in Eq. 52 is over
a single particle’s motion and if the complete
trajectory were mapped out, that average (for
one particular value of ∆t and K) would be
obtained as follows. Pick the x-axis along the
direction of K so that K ·∆r = K∆x. Make a
list of the particle’s x-coordinate x0, x1, ... at
time steps t0, t1, ... spaced ∆t apart through-
out the time interval over which the averaging
is to be performed. Find ∆x1 = x1−x0, the x-
displacement for the first time interval from t0
to t1 and evaluate eiK∆x1 . Repeat this process
to find the displacement ∆x2 for the second in-
terval from t1 to t2 and evaluate eiK∆x2 . Con-
tinue until you have covered the entire time
interval. The average value of the eiK∆xi is
the sought after quantity.

s2 =
1

N

N∑

i=1

eiK∆xi (54)

Can we predict this average? Because the
particles undergo Brownian motion, the values
of the ∆xi’s appearing in Eq. 54 will be ran-
dom variables. They will be distributed with
probabilities governed by Eq. 23 (with the sub-
stitution of ∆x for x and ∆t for t in Eq. 22).
As N →∞ the sample average in Eq. 54 can
be calculated as a parent average—a weighted
average over all possible ∆x’s with dP (∆x)
providing the weights. This gives

s2 =
1√

2πσ2

∫ ∞

−∞
eiK∆xe−(∆x)2/2σ2

d∆x (55)

We can expand eiK∆x = cos K∆x +
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i sin K∆x. The sine term gives an odd inte-
grand over an even integration interval and
therefore vanishes. The cosine term is easily
integrated and gives

s2 = e−K2σ2/2 (56)

Now, we can write down an expression for
RI(∆t). Recall that in the sum over j, k, l, m
in Eq. 42, there are N2 terms each contribut-
ing unity and N2−N terms each contributing
s2s

∗
2 = e−K2/σ2

. Thus,

RI(∆t) = β2E4
0

[
N2 + (N2 −N)e−K2σ2

]

(57)
With σ2 = 2D∆t this equation predicts
RI(∆t) will be a constant plus a decaying ex-
ponential

RI(∆t) = A + Be−Γ∆t (58)

where the decay rate Γ would be given by

Γ = 2K2D (59)

Using Eqs. 28, 32 and 35 this becomes

Γ =
32πn2kBT

3ηλ2
0

· sin2(θ/2)

d
(60)

where λ0 is the vacuum wavelength and n is
the medium’s index of refraction (λ = λ0/n).

Exercise 7 The predicted decay rate given by
Eq. 60 can be written

Γ = κ
sin2(θ/2)

d
(61)

where κ is a function of the temperature T .
Using λ0 = 632.8 nm for the HeNe laser, kB =
1.3807×10−23 J/K, and Table 1 for the index
of refraction and viscosity of water, make a
table and graph of κ in the temperature range
15− 30◦C.

Temp. η n
(◦C) (kg/m/s)

15 0.001139 1.333
16 0.001109 1.333
17 0.001081 1.333
18 0.001053 1.333
19 0.001027 1.333
20 0.001002 1.333
21 0.000978 1.333
22 0.000955 1.333
23 0.000933 1.333
24 0.000911 1.333
25 0.000890 1.333
26 0.000871 1.332
27 0.000851 1.332
28 0.000833 1.332
29 0.000815 1.332
30 0.000798 1.332

Table 1: Values of the viscosity η and index of
refraction n of pure water as a function of tem-
perature T . (From CRC Handbook of Chemistry
and Physics.)

Calculation of the Power Spectrum

The power spectrum for the intensity I(t) and
its Fourier transform Î(ω) are related by the
reciprocal relationships

Î(ω) =
∫ ∞

−∞
I(t)eiωtdt (62)

and

I(t) =
∫ ∞

−∞
Î∗(ω)e−iωt dω

2π
(63)

Using Eq. 63 to substitute for I(t) and I(t+
∆t) in the expression for the autocorrelation
function Eq. 40 gives

RI(∆t) = lim
T→∞

1

2T

∫ T

−T
dt

∫ ∞

−∞
dω

2π

∫ ∞

−∞
dω′

2π[
Î(ω)Î∗(ω′)eiωte−iω′(t+∆t)

]
(64)
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Rearranging

RI(∆t) =
1

2T

∫ ∞

−∞
dω

2π

∫ ∞

−∞
dω′

2π
Î(ω)Î∗(ω′)

e−iω′∆t lim
T→∞

∫ T

−T

[
ei(ω−ω′)t

]
dt (65)

The last integral is a representation of the
Dirac delta function

lim
T→∞

∫ T

−T
ei(ω−ω′)t dt = 2πδ(ω − ω′) (66)

giving

RI(∆t) = lim
T→∞

1

2T

∫ ∞

−∞
dω

2π

∫ ∞

−∞
dω′

2π
(67)

Î(ω)Î∗(ω′)e−iω′∆t2πδ(ω − ω′)

Noting that
∫∞
−∞ f(x)δ(x−x0)dx = f(x0), the

integration over ω′ can be carried out giving

RI(∆t) =
∫ ∞

−∞

[
lim

T→∞
1

2T
Î(ω)Î∗(ω)

]
e−iω∆t dω

2π
(68)

The term in square brackets is the definition
(Eq. 39) of the intensity’s power spectrum
SI(ω). Making this substitution gives

RI(∆t) =
∫ ∞

−∞
SI(ω)e−iω∆t dω

2π
(69)

which shows that RI(∆t) and SI(ω) form a
Fourier transform pair. The reciprocal rela-
tion

SI(ω) =
∫ ∞

−∞
RI(∆t)eiω∆td∆t (70)

allows us to predict the power spectrum from
the autocorrelation function. Inserting Eq. 57
for RI(∆t) and performing the integration
gives

SI(ω) = β2(E0)
4

[
N22πδ(ω)+ (71)

(N2 −N)2(2DK2)
1

ω2 + (2DK2)2

]
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Figure 2: Upper figure: Experimental setup
(aperture on collimating lens and cell mask not
shown). Lower figure: Shows cell mask and re-
fraction as light emerges from the cell.

Apart from the Dirac delta function, this ex-
pression is Lorentzian centered at ω = 0 with
a half width at half maximum

(∆ω)1/2 = 2DK2 = Γ (72)

For fitting purposes Eq. 71 can be rewritten

SI(ω) = Aδ(ω) +
B

1 + (ω/Γ)2 (73)

Apparatus

A schematic of the experiment is shown in
Fig. 2. A HeNe laser is the source of the in-
cident plane waves. (If, as in this experiment,
the laser electric field is linearly polarized per-
pendicular to the scattering plane, so too is
the scattered radiation.) The laser beam is fo-
cused to a sharp, horizontal line parallel to the
wall of the scattering cell through which the
scattered light will be observed. The scattered
light passes through a lens and is detected by
a small area (1 mm2) silicon avalanche pho-
todiode detector placed at the focal point of
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the lens. This lens-detector arrangement en-
sures that all light impinging on the detector
emerged from the cell at nearly the same angle
θm relative the original beam direction.

I(t) includes a constant average scattering
intensity that contains little relevant informa-
tion. It affects the background level of the
exponentially-decaying autocorrelation func-
tion and the DC component of the Lorentzian
power spectrum, but does not affect Γ — the
parameter of interest in this experiment. Γ
is determined entirely by the variations in the
intensity about its average value. In fact, the
detector circuit (discussed next) includes an
adjustment to offset this average intensity so
we can better measure the intensity variations.

Detector

The silicon avalanche photodiode circuit is
shown in Fig. 3. The detector reverse bias
voltage Vd is supplied by an adjustable Kepco
supply, while the positive and negative sup-
plies for the operational amplifiers use the
fixed ±15 V supply. Vd = 106 V is specified
by the manufacturer. Light of intensity I(t)
incident on the detector causes a proportional
current i(t) to flow through it. There is also
an additional small dark current (background
noise) associated with these detectors. The
photocurrent i(t) is converted to a voltage v(t)
by the first operational amplifier v(t) = i(t)r,
where r = 10 MΩ. The 10kΩ potentiometer
will need to be adjusted at each trial to off-
set the DC component of the intensity so that
the analog-to-digital converter (ADC) in the
computer can use the highest possible gain.

The variations in the detector signal V (t)
will be proportional to the intensity variations
of the light incident on it. Thus, aside from the
background level of RI(∆t) or the DC compo-
nent of SI(ω), the analysis for I(t) is likewise
true for V (t).

The second op-amp is used in a two-pole
Butterworth low-pass filter having its 3 dB fre-
quency set at fc = 1/2πRC—around 7 kHz,
with R = 47 kΩ and C = 470 pf. It also pro-
vides additional gain of about 47k/27k. The
filter attenuates the high frequency compo-
nents of the detector shot noise without appre-
ciably decreasing the slower signal variations
arising from the motion of the spheres.

Data sampling issues

The data acquisition program repeatedly ac-
quires a finite sample of I(t) at points equally
spaced in time. You will specify the number
of points N collected on each sample and the
time interval ts between points.

The autocorrelation function is then calcu-
lated from

RI(∆t) = 〈I(t)I(t + ∆t)〉 (74)

for ∆t = i ts, i = 0...N − 1. The average is
over all t for which pairs I(t) and I(t + ∆t)
exist in the sample.

Thus for ∆t = 0 there are N pairs, for ∆t =
ts there are N − 1 pairs, ..., and for ∆t =
(N − 1)ts there is only a single pair (the first
and last point in the sample). Thus for ∆t
near (N − 1)ts there will only be a few pairs
in the average and the quality of these points
will be poor.

There must be a reasonable number of
points over the region of ∆t where RI(∆t)
is decaying exponentially. Thus ts should be
small compared to the time constant 1/Γ of
the decay. The largest Γ you will measure
will be around 1000/s and thus the shortest
time for the exponential to completely decay
(about 5 time constants) will be about 5 ms.
Thus with the default value for ts of 0.05 ms
there will be at least 100 points in RI(∆t)
over the first 5 time constants for even the
fastest decays. With the default sample size of
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Figure 3: Avalanche photodiode (Hamamatsu S2382) detector circuit schematic. Positive and nega-
tive voltage supplies for the operational amplifiers (OP27) not shown.

N = 8192, the first point RI(0) would be cal-
culated with 8192 pairs while RI(5 ms) would
use only slightly less (8093) pairs.3

The program also computes the power spec-
trum SI(ω) (Eq. 39) using discrete Fourier
transforms equivalent to Eq. 38. It is recom-
mended that the sample size N be a power of
two, such as 8192 (= 213), so that the fast-
Fourier transform algorithm can be used. The
power spectrum’s Nyquist frequency4 is half
the sampling frequency and to prevent aliasing
should be above the highest measurable fre-
quencies. With the detector’s 7 kHz low pass
filtering, the default sampling rate of 20 kHz
is a reasonable choice. The spacing between
points in the power spectrum is the sampling
frequency divided by the number of points in
the sample. Using 8192 points at 20 kHz gives
a frequency spacing of about 2.5 Hz. The half-
width at half maximum of the power spectrum
occurs at ω = Γ or f = Γ/2π) and thus for

3The program that fits RI(∆t) to Eq. 58 weighs all
data equally. For this to be a reasonable approxima-
tion, there should be approximately the same number
of pairs for all points used in the fit.

4The Nyquist frequency is the highest frequency
components accurately determined by a Fourier trans-
form.

the smallest Γ measured in this experiment
(around 100), there can be as few as 10-20
data points within one half-width.

The data acquisition program repeatedly
takes an I(t) sample, calculates RI(∆t) and
SI(ω), and then sums each of these functions
point by point with the results from prior sam-
ples until data acquisition is stopped.

Procedure

Laser Safety

The helium neon laser has sufficient intensity
to permanently damage your eye. Obviously,
you must never allow the laser beam to
fall anywhere near your face. Even a re-
flected beam can cause permanent eye dam-
age. In fact, most accidents involving lasers
are caused by reflections from smooth surfaces.
To avoid such accidents the following steps
must be taken.

1. Remove all reflective objects from your
person (e.g., watches, shiny jewelry).

2. Make sure that you block all stray reflec-
tions coming from your experiment.
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3. Never be at eye level with the laser
beam (e.g., by leaning down).

4. Be careful when you change optics in your
experiment so as not to inadvertently
place a highly reflective object (mirror,
post) into the beam.

The microspheres may clump together or,
if the water is not distilled, particulates may
begin to clump with the spheres. If you are
in doubt as to the quality of your suspension,
make a new one using one drop of sphere con-
centrate to a cell filled with distilled water.
Add spheres or dilute further until a complete
and bright scattering line is observed when the
cell is illuminated by the laser beam.

You may need to de-clump samples before
use (even newly-prepared samples) by holding
the cell 1/2-3/4 submerged in the ultrasonic
cleaner for 15-30 seconds. It’s kind of neat to
measure and fit the autocorrelation function
(say at 90◦) before and after to see if there is
any effect from de-clumping.

Take a room temperature reading and use
your results from Exercise 7 to determine κ.

For each of the two sphere sizes:

1. Line up the sample cell, laser and focus-
ing lens so that the laser beam makes a
sharp line about 1 mm inside the front cell
surface and so the illuminated line is cen-
tered over the pivot point of the detector
arm.

2. Place a white screen downstream from the
cell and observe the pattern of scattered
light around the main spot and its tem-
poral variations. Answer Comprehension
Question 2

3. Using a polarizer, check the polarization
of the laser. Make sure it is vertical for
the rest of the experiment. But check out
what happens when the laser is turned so

that the polarization is horizontal. An-
swer Comprehension Question 3

4. Set the collimating lens/aperture as close
as possible to the cell but far enough away
so that it does not interfere with the arm’s
rotation. Mask the cell and set the aper-
ture just wide enough to let in the light
leaving the front of the cell, making sure
that no light from the entrance or exit
faces of the cell will be detected.

5. Position the detector one focal length
from the collimating lens.

6. Connect the detector supply voltages and
the detector output to the oscilloscope.
Have the instructor check your connec-
tions before turning on the supplies.

7. Turn the room lights off and, if necessary,
cover the apparatus with a dark cloth.
Adjust the potentiometer to center the
detector voltage around zero. (Check the
zero level by temporarily grounding the
scope input and making sure the scope is
DC coupled.) Note the maximum ampli-
tude of the noise signal from the detector.

8. Connect the detector output to the input
labeled 1 on the interface box.

9. Launch the DLS data acquisition pro-
gram and click on the run button in the
LabVIEW toolbar if the program is not
already running.

10. The input settings area has controls which
determine various ADC conversion pa-
rameters. The input channel must corre-
spond with the BNC input used on the
interface box. The default values for the
sample size and sampling rate were dis-
cussed earlier and should work well for
all of the recommended measurements.
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The range control for the ADC defaults
to ±100 mV and should be set as small
as possible compatible with the voltages
from the detector, which can change de-
pending on the scattering angle. Be sure
to check that the measurements do not
saturate. If the raw signal is flat or shows
flattened out regions, the range control
needs to be adjusted.

11. Click on the begin acquisition button
and collect data until the autocorrela-
tion function appears reasonably smooth.
Then click on stop acquisition button.
Note that any changes to the input set-
tings do not affect a run in progress and
only take effect when the begin acquisition
button is pressed again.

12. Collect data for around 8 values of θm be-
tween about 30◦ to 120◦, adjusting the
input limits and the detector offset as ap-
propriate for each signal. θm can be ob-
tained by lining up the detector arm with
the holes in the optical breadboard and
taking an inverse tangent. Analyze each
data set as described next.

Data analysis

Theoretically, even with the low pass filter-
ing, shot noise from the detector is expected
to modify the experimentally obtained RI(∆t)
and SI(ω). The shot noise is expected to add
a δ(∆t) of some amplitude to RI(∆t) and a
constant to SI(ω). Recall there was already
a predicted constant in RI(∆t) and a δ(ω) in
SI(ω). Thus both should have a constant term
and a Dirac delta function term (both of which
are not important). To avoid dealing with the
delta functions, make sure that the first point
in each spectrum is not used in the fit. Thus
the fitting function Eq. 58 is OK as it is and

the fitting function for SI(ω) should be modi-
fied to

SI(ω) = A +
B

1 + (ω/Γ)2 (75)

i.e., we have dropped the delta function and
added a constant term.

The graph of the processed signal can be
changed to either the power spectrum or the
autocorrelation function during or after data
acquisition. If you accidentally stop the pro-
gram, just hit the LabVIEW run button and
the data should again be available although
you will not be able to add to it. The curve
fitting and save to spreadsheet features of the
program work with the data selected for the
graph.

After collecting a data set, select the auto-
correlation function and then fit it to the pre-
diction of Eq. 58 to determine best estimates
of A, B and Γ. Note in the model descrip-
tion area below the graph how the name in
the ind. var. and the names in the parameters
array correspond with those used in the fitting
model. Also note how the formula is written
a+b*exp(-100*c*t). For our data sets, A and
B are typically around one and Γ is typically
several hundred. Recall that nonlinear fitting
requires that you provide initial guesses for the
fitting parameters and typically works better
when all parameters are of the order unity. If
the fit does not work properly, you may need
to scale the fitting parameters to force them
near unity. (Scaling is often the problem if one
or more parameters do not change from their
initial guesses.) This scaling technique is illus-
trated by the default fitting model which uses
Γ = 100c so that the fitting parameter c will
be of order unity. If you scale the fitting pa-
rameters this way, remember to rescale them
to get the actual physical parameters.

The cursors must be set to Lock to plot (the
default) and the fit is performed only over the
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region between the cursors displayed on the
graph. The fitting program gives parameter
uncertainty estimates, but they may not be re-
liable. You should vary the starting point (but
never include the first point) and the ending
point of the fit to get other estimates of the
uncertainty in Γ. For example, try fitting the
the first half of the decay curve and then the
second half. Why might changing the fitting
region affect the parameters? You should also
check the reproducibility by repeating a few
of the measurements and fits. Keep a record
of the Γ’s obtained so that you can make rea-
sonable estimates of the best values and their
uncertainties.

For one or two data sets try fitting the power
spectrum to the prediction of Eq. 75. Keep in
mind that the data for the power spectrum
is intensity vs. frequency f (in Hz) while the
prediction of Eq. 75 is expressed as a function
of ω = 2πf . For readability, you may want
to change the ind. var. to f , even though it
is simply a dummy variable. You might take
care of the difference between f and ω by a
fitting model such as a+ b/(1+(f/(100∗ c))2)
and demonstrating to yourself that in this case
Γ = 100c/2π.

Compare the resulting Γ from this fit to
value from the fit to the autocorrelation func-
tion. Should they give the same Γ?

If you want to try a fitting model with more
than three parameters, all you need to do is
name them in the parameters array, use them
in the new fitting model, and supply initial
guesses for them. If you want to try a one
or two parameter fitting model, the process is
the same, but you must first right click on the
array index (the 0 at the top left of the array)
for the parameters and initial guesses array and
select Data Operations|Empty Array.

Because of the refraction at the cell wall, the
true scattering angle θ and the measured an-
gle θm will differ as demonstrated in the lower

part of Fig. 2. Use Snell’s law to deduce the
relationship between them and determine θ for
each θm used.

CHECKPOINT: You should have com-
plete sets of measurements for each of
the two samples of microspheres. An
estimate of the microsphere diameter
should be calculated from just the θm =
90◦ measurement to check if your data
are reasonable.

Comprehension Questions

1. Explain qualitatively why Γ goes to zero
at θ = 0 and why it increases with in-
creasing θ. As Γ increases, does the
autocorrelation function decay faster or
slower? As Γ increases, does the width
(frequency content) of the power spec-
trum increase or decrease? Do these ef-
fects imply that the electric field changes
more or less rapidly as Γ increases?
Would this imply the same Brownian mo-
tion must result in faster or slower varia-
tions in E at larger scattering angles? Be-
cause the variations E are due to changes
in the phase of the scattered waves as the
particles move, we should check how the
phase changes for a given particle motion.
Thus, consider Fig. 1 (top). Assume that
crests of the scattered wave are emitted
as each crest from the incident plane wave
hits the scatterer. The change in the scat-
tered wave’s phase at the detector will
then be due to two possible effects. First,
if the particle moves parallel to the inci-
dent wave direction there will be a corre-
sponding change in the phase of the inci-
dent wave as it hits the scatterer, e.g.,
if the particle moves half a wavelength
downstream, it will be hit by a crest half
a period later compered to when it was
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farther upstream. Secondly, if the parti-
cle moves parallel to the scattered wave
direction, there will be a corresponding
change in the phase of the scattered wave
as it hits the detector, e.g., if the particle
moves half a wavelength farther from the
detector, the crests will hit the detector
half a period later. So now consider fig-
ures like those of Fig. 1 for θ = 0, π/2 and
π. For each of the three scattering angles,
explain how the phase at the detector for
the wave scattered from a sphere at point
P would change as the sphere moves a dis-
tance λ/4 (a) in the direction of ki (to the
right in the Fig. 1) and (b) perpendicular
to that direction (say, down in Fig. 1).
That’s six cases all together. Finally, re-
late these cases to the original question.

2. Describe the pattern observed in the
forward scattered light (viewed on the
screen). As you move away from the cen-
tral (unscattered) beam can you notice
any systematic variations in the typical
size of the bright spots in the pattern or
in the speed at which they appear and
disappear? Does this agree with your ex-
pectations? Explain.

3. When you turn the laser so the polariza-
tion is horizontal, what happens to the
scattering light viewed at 90◦ to the beam
direction? Explain your observations.

4. The measured signal has frequency com-
ponents as described by Eq. 73. Note
from the second term that as Γ increases
the power spectrum spreads out to higher
and higher frequencies. Since the filter
cuts out frequencies above 7 kHz, de-
termine the largest value of Γ for which
the integral of the second term in Eq. 73
above 7 kHz is no more than 1% of the to-
tal integral. Which of your data sets will

be most affected by the filtering? What
fraction of the power is lost for this data
set?

5. For each sample, plot Γ vs. sin2(θ/2).
What does Eq. 60 predict for the shape of
this plot? Perform a linear regression and
find the slope and its uncertainty. Should
the regression fit be forced through the
origin? Explain. Check the rms devia-
tion between the data and the fit and de-
termine whether or not the results are in
agreement with the predictions. Use your
analysis (and your value of κ) to deter-
mine the sphere diameters and compare
with the manufacturer’s stated value.
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