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A two-body interaction potential energy function is used to predict the structural stability and cohe-
sive energy of Molybdenum (Mo) and Tungsten (W) metallic nanocrystals by size dependant potential
parameter. The model proposed is a two-body part of Erkocs potential energy function. The model ap-
plies successfully to BCC and FCC elements and predicts the size dependence of the cohesive energy of
nanocrystals. This prediction agrees excellently with experimental measurements on Mo and W.
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1. INTRODUCTION

Nanoscience is a widespread applied science working
with nanomaterials composed of grain sizes on the or-
der of 1-100 nm with the majority of atoms located
at the surface of crystals, whereas they are the bulk in
conventional materials. The behavior of such nanocrys-
tals is different from bulk since (i) the surface to vol-
ume ratio of the number of atoms is very large, so sur-
face atoms will be less stable than interior atoms due
to their lower coordination number [1, 2], and (ii) the
distance between surface atoms and the nearest interior
atoms is larger than the distance between interior atoms
i.e., more than half of the bonds are dangling bonds [3].
Substances with higher ratio of surface to volume num-
ber of atoms have enhanced chemical, mechanical, op-
tical and magnetic properties [4]. Mechanical properties
such as hardness, elasticity, and ductility show drastic
differences in nanocrystals compared to bulk. Nanocrys-
tals also exhibit novel super characteristics such as su-
perheating [5], superparamagnetism [6], and superplas-

ticity [4]. Among many physical quantities, the cohe-
sive energy is of special interest since all the thermo-
dynamical quantities like heat capacity, surface tention,
etc., may be derived from it. The cohesive energy of a
crystal is defined as the energy that must be added to
the crystal to separate its components into neutral free
atoms at rest, at infinite separation [7]. Cohesive en-
ergy depends on the size of nanocrystals, type of atoms
involved, the shape and structure. For nanocrystals, a
careful measurement of the cohesive energy proved its
size dependence [8], while it is constant for bulk crys-
tals. Many theoretical models and techniques were de-
veloped to predict the size dependence of the cohesive
energy [9-20]. Although all of these models success-
fully predict the size dependence of the cohesive en-
ergy, some of them were phenomenological [10, 17] and
not computational in a sense they cannot justify some
of the criteria related to the crystals such as structure
transition. There are many research groups that used
the semi-empirical potential energy functions and com-
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puter simulations to study the behavior of the cohesive
energy of nanocrystals. W.H. Qi et al [13] tried to fit
the experimental data of Mo and W by using the well
known two-body Lennard-Jones potential energy func-
tion (PEF). The size dependence is included but the ratio
of the cohesive energy of the nanocrystal to that of the
bulk for the above mentioned elements did not match
the data. Another group, T. Barakat et al [16] used two-
body PEF and achieved excellent fit for Mo and W using
Mie-Type potential function with (m, k) as (6, 5). The
use of this model had a main problem due to two power
terms of the same order. So both of them are considered
to be short range terms. It was implicitly assumed in the
model that long range interactions are ignored which is
physically unacceptable. Another model to be discussed
here is a phenomenological model by F. Aslam et al.
[17], employed an empirical PEF that comprises two
body terms of long range as coulomb and Van Der Waals
as Lennard-Jones terms and predicts successfully the
size dependence of the cohesive energy. Recently our
group [18], designed a model which includes both two
and three body terms in the PEF. The two body term was
a Mie-Type with (m, k) as (8, 4). So one of them is for
short range and the other is for long range terms. The
three body term is a Teller-Axilord triple-dipole term.
The only assumption made for this model was to con-
sider the crystal as spherical, so shape factor was ig-
nored. The model applies to all elements in the periodic
table exceptionally and shows stability. In this paper the
size dependant potential parameter (SDPP) method has
been proposed to perform the cohesive energy and struc-
tural stability calculations. This method although simple
in principle, proves to be powerful in the results it pre-
dicts.

2. MODEL AND POTENTIAL
ENERGY FUNCTION

The potential energy of N interacting atoms can be ex-
pressed as a many-body expansion:

φ = φ2 + φ3 + · · ·φn + · · · , (1)

Whereφ2, φ3, · · · are the two, three-body· · · , interac-
tion energies respectively. In the present work,two-body
atomic interactions are adopted to simulate and repro-
duce the cohesive energy and structure-related proper-
ties. The two-body PEF, uses simplified statistical me-
chanical formalism for calculating various thermo dy-
namical properties and enabled many early researchers
to run simulation calculations with relatively less pow-
erful computers [21].

An empirical potential energy function PEF to de-
scribe the three-to-thirteen-atom microclusters was sug-
gested in 1989 [22,23] and modified in 1990 [24] by
S. Erkoc. This PEF works well for the microclusters of
elements at different structures [22,23 ]. There are dif-
ferent empirical PEF’s to describe the interatomic inter-
action of bulk and small clusters, like those suggested
by Person et al, Stillinger and Weber and Tersoff. Al-
though their predictions of the structural stability and
cohesive energies are fairly good, they require an evalu-
ation of three, nine, and eleven parameters respectively.
However, the PEF proposed by Erkoc (EPEF) need the
evaluation of only two parameters. The explicit form of
EPEF for N interacting atoms is:

φ = C2φ2 + C3φ3, (2)

where

φ2 =
N∑

i,j=1
i 6=j

∪ (ri, rj) (3)

and

φ3 =
N∑

i,j,k=1
i6=j 6=k

W (ri, rj , rk) (4)

In this project, three assumptions are made:

(1) The structure of the nanocrystal is the same as that
of a bulk.

(2) The nanocrystals are in FCC or BCC cubic form.
(3) All atoms are in equilibrium and interacting via

two-body Erkoc potential energy function (EPEF):

More explicitly∪ (ri, rj) is expressed as:

∪ (ri, rj) = A

[(
ro

rij

)2β

e−2α(rij/ro)2 −
(

ro

rij

)β

e−α(rij/ro)2

]

(5)
wherero is the equilibrium distance between dim-

mers,rij is the interaction distance between atomi and
atomj andβ is a positive number. The parametersA,
andα are found through the two stability conditions:

∪ij ]rij=ro = εo, (6)

and
∂∪ij

∂rij

]rij=ro = 0 (7)

Simple calculations give the values of the two parame-
ters as:

A = −4εo, (8)
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α = ln(2) (9)

The total interaction energy of a nanocrystal is found by
summing all the energies of all atoms in the crystal and
is expressed as:

φ =
1
2

N∑

i,j=1
i 6=j

∪ (ri, rj) (10)

The structure of any crystal is determined by primi-
tive lattice cell and primitive basis. A monoatomic crys-
tal having cubic structure is determined by the nearest
neighbor distance d. Another characteristic of all ele-
ments is the equilibrium distance between dimmersro.
The ratioro/d has a definite value at the bulk of all el-
ements, but have a different value at nanoscale. So the
energyφ may be written in a different form as a function
of the parameterr∗ as:

φβ =
1
2
A

[∑(
d

rij

)2β

e−2α(rij/d)2r∗−2
r∗2β

]
(11)

The equation (12) is in continuation of equation no (11).
[
...−

∑(
d

rij

)β

e−α(rij/d)2r∗−2
r∗β

]
, (12)

φ∗β = 2
(
A2βr∗2β −Aβr∗β

)
, (13)

where

φ∗β = φβ/ε0, (14)

r∗ = ro/d, (15)

A2β =
∑ (

d

rij

)2β

e−2α(rij/d)2r∗−2
(16)

and

Aβ =
∑(

d

rij

)β

e−α(rij/d)2r∗−2
(17)

The stability condition of the nanocrystal is

∂φ/∂V = 0 or∂φ / ∂ d = 0 (18)

Since the volume V is related to d via the relation
V = Nogd3, whereNo. is Avogadros number and g is
a geometrical factor. This relation lead to the stability
equation:

−2βA2βr∗
2β

+βAβr∗
β−4αB2β−2r∗2β−2+2αBβ−2r

∗β−2 = 0,
(19)

where

B2β−2 =
∑(

d

rij

)2β−2

e−2α(rij/d)2r∗−2
(20)

and

Bβ−2 =
∑(

d

rij

)β−2

e−α(rij/d)2r∗−2
(21)

The values ofr∗ may be found from equation (19)
numerically for a specificβ . These values are then
plugged into equation (13) to find the equilibrium en-
ergy at any structure for the specifiedβ. The parameters
Aβ, A2β, B2β−2 andBβ−2 depend on the value ofr∗ as
well as on the size of the nanoparticle N.

The variations of these parameters are shown in fig-
ures (1-8) for FCC and BCC structures for different val-
ues ofβ. It is clear from the figures that the values of
A’s and B’s increase rapidly for small N and converge to
their bulk values slowly. The bulk sums of A’s and B’s
at some values ofβ are given in Table 1.

Face-Centered cubic Body-centered cubic
β Aβ A2β Bβ−2 B2β−2 Aβ A2β Bβ−2 B2β−2
1.3 33.80 11.98 160.03 22.05 32.55 11.12 162.89 21.64
1.35 28.84 10.60 118.65 17.72 27.77 9.82 17.38 120.97
2 12.02 5.11 23.48 5.76 11.32 4.56 23.36 5.42
3 8.29 3.7 9.49 3.82 7.58 3.15 11.29 3.41

Table 1: The lattice sumsAβ, A2β, B2β−2 andBβ−2
of the FCC and BCC structures for different values ofβ.

The value of the relative cohesive energy
φnanocrystal / φbulk as a function of size is of special
interest since it describes the same behavior for any
element.

3. NUMERICAL RESULTS AND
DISCUSSIONS

Figures (9, 10) show the relative cohesive energy of
metallic nanocrystals for BCC and FCC structures and
for different potential ranges. The figures show clearly
that the potential used predicts successfully the size de-
pendence of the cohesive energy which increase rapidly
as size increases toward the values at N= 2000, then
it gradually increases toward the bulk values. The ar-
rows indicate the experimental values for Mo and W.
The variation ofβ controls the range of the potential
where the best fit to the experimental values of the rela-
tive cohesive energies of Mo and W were systematically
found by varyingβ. The value ofβ that gives the best
fit for Mo and W is 1.35 where the relative cohesive en-
ergy is given in Figure 11 for both FCC and BCC struc-
tures. The values of the relative cohesive energy are very
close and this indicates clearly the possibility of struc-
ture transition between FCC and BCC. Both Mo and W
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Fig. 1: Size dependence potential parameterA1.3, A2.6, B0.6 andB−0.7 of face-centered cubic structure as a function
of nanocrystal size N

Fig. 2: Size dependence potential parameterA1.3, A2.6, B0.6 andB−0.7 of body-centered cubic structure as a function
of nanocrystal size N

have BCC structure at bulk, while they have FCC struc-
ture at nanoscale [8].
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5. CONCLUSION

In conclusion, the present calculation are consistent with
experimental values for Mo and W (Figure 11), where it
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Fig. 3: Size dependence potential parameterA1.35, A2.7, B0.7 andB−0.65 of face-centered cubic structure as a func-
tion of nanocrystal size N

Fig. 4: Size dependence potential parameterA1.35, A2.7, B0.7 andB−0.65 of body-centered cubic structure as a func-
tion of nanocrystal size N.

was reported that the cohesive energy of Mo nanocrys-
tal of the size N = 2000 is−4.25 eV/atom, whereas the
cohesive energy of the bulk Mo is−6.2 eV/atom. For
a W nanocrystal of size N = 7000, its cohesive energy
is −6.42 eV/atom and that of the corresponding bulk
W is -8.55 eV/atom. In addition, the size dependence

and the relative cohesive energy is shown for both FCC
and BCC structures. The two-body Erkoc PEF which
comprises both long-range and short-range terms can be
possible candidate to study different thermo-dynamical
properties of nanocrystals.
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Fig. 5: Size dependence potential parameterA2, A4, B2 andB0 of face-centered cubic structure as a function of
nanocrystal size N.

Fig. 6: Size dependence potential parameterA2, A4, B0 andB2 of body-centered cubic structure as a function of
nanocrystal size N.
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Fig. 10: Size dependence of the relative cohesive energy of body-centered cubic structure with different potential
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Fig. 11: Size dependence of the relative cohesive energy of face-centered cubic and body-centered cubic structures
with β = 1.35 as a function of nanocrystal size N.
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