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Size-dependent melting point of noble metals
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Abstract

A simple model, without any free parameter, is introduced to predict the size-dependent melting temperature of noble metals in this
contribution. It is found that the model predictions for the melting point depression of both Au and Ag nanoparticles correspond to the
experimental and computer simulation results well.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The physical properties of nanoparticles are a sub-
ject of intense contemporary interest[1]. As the size of
low-dimensional materials decreases to nanometer size
range, electronic, magnetic, optic, catalytic and thermody-
namic properties of the materials are significantly altered
from those of either the bulk or a single molecule. Among
the above special properties of nanocrystals, the melting
point of nanocrystalsTm(r) with r being the radius of
nanocrystals is one of the important thermodynamic char-
acteristics, which determines many properties of materials.
It is found thatTm(r) is size-dependent and is evidently
lower than the corresponding bulk oneTm(∞) [2–10].
Since noble metals have good corrosion resistance and
thermal stability, the measuredTm(r) functions have thus
better measuring accuracy even the size of the crystals
is only several nanometers. The above characteristics of
the noble metals lead to that the measuredTm(r) func-
tions of these metals can be utilized to check up the va-
lidity of theoretical models and the computer simulation
results forTm(r) functions. Thus,Tm(r) functions of the
noble metals are always measured for more than 30 years
[6–9].
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2. Model

Recently, a model without any free parameter forTm(r)
was developed based on assumption on the size-dependent
amplitude of the atomic thermal vibrations of nanocrystals
in terms of Lindemann’s criterion[11] and Mott’s equation
for the relationship between the vibrational part of the over-
all bulk melting entropySvib(∞) andTm(∞) [12,13]. In this
contribution, the experimental and computer simulation re-
sults ofTm(r) functions of noble metals are compared with
the prediction of this model. It is found that there is a good
agreement among them.

Tm(r) functions can be deduced by considering the aver-
aged mean square displacement (msd) of a nanocrystalσ2(r)
with [2]:

σ2(r) = σ2
V(r) + [σ2

S(r) − σ2
V(r)]

(
nS

nV

)
(1)

where the subscripts S and V denote surface atoms and
atoms located within the particle,n is the number of atoms in
the nanocrystal withnS/nV = (4πr2h/v)/[((4/3)πr3/v) −
(4πr2h/v)] = 3h/(r − 3h) when the nanocrystal is consid-
ered as a spherical or quasi-spherical wherev andh show the
atomic volume and the atomic diameter. Since for nanocrys-
tals the atomic oscillation of larger amplitude in comparison
with the corresponding bulk value exists not only in the sur-
face, but also in the core, it is assumed that: (1)σ2

V(r) and
σ2

S(r) are size-dependent,σ2
S(r)/σ2

V(r) = σ2
S(∞)/s2

V(∞) =
α is however size-independent; (2) the cooperative coupling
between the surface region and the interior region, which
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may be important for small particles and is considered phe-
nomenologically by taking the variation ofσ2(r) to be de-
pendent on the value ofσ2(r) itself [2]. With the above two
considerations, a change inσ2 can be given by[2]:

σ2(x + dx) − σ2(x) = (α − 1)σ2(x) dx (2)

wherex = nS/nV = r0/(r − r0), r0 = 3h denotes a crit-
ical radius at which almost all atoms or molecules of a
low-dimensional material are located on its surface. Inte-
gratingEq. (2):
∫ r

∞
1

σ2(x)
dσ2(x) = (α − 1)

∫ x

0
dx

it is obtained:

σ2(r)

σ2(∞)
= exp[(α − 1)x] = exp{(α − 1)/[(r/r0) − 1]} (3)

r0 has been further extended to all dimensions of the
low-dimensional crystals[3–5]. Let d denote the dimension
andd = 0 for nanoparticles wherer has a usual meaning
of radius,d = 1 for nanowires withr being taken as its
radius andd = 2 for thin films with r denoting its half
thickness[3–5]. r0 is given by: (1)r0 = 3h for d = 0 since
4πr2

0h = 4πr3
0/3; (2) r0 = 2h for d = 1 since 2πr0h = πr2

0
and (3) r0 = h for d = 2 since 2h = 2r0. In short, the
relationship betweend andr0 is given by[3–5]:

r0 = (3 − d)h (4)

To find a convenient means for correlating the size-dependent
melting temperatureTm(r) to measurable physical proper-
ties such asσ2, Lindemann criterion[6,7], which says that
a crystal will melt whenσ/h reaches a certain fraction of
c, is useful and is known to be valid qualitatively for small
articles:

σ/h = c (5)

althoughc varies a bit with crystal structure: it is 0.13 for
fcc crystal and 0.18 for bcc crystal[8]. This difference is
partly induced by the change ofh, which depends on the co-
ordination number of the lattice CN[9]. A smaller CN cor-
responds to a smallerh [10]. In order to reduce or eliminate
this difference among distinct lattices or CNs,h here is cal-
culated by atom volume that is little dependent on the lattice
structure[9]. With this h, c is almost a lattice-independent.

Since Tm(r) is usually higher than the bulk De-
bye temperatureΘD(∞), the high temperature approx-
imation can be utilized[2,11,12], σ2(r, T) = f(r)T ,
where f(r) is a size-dependent function. Thus, at anyT,
σ2(r, T)/σ2(∞, T) = f(r)/f(∞). Moreover, whenT =
Tm, f(r)/f(∞) = {σ2[r, Tm(r)]/h2}/{σ2[∞, Tm(∞)]/h2}
[Tm(∞)/Tm(r)] = Tm(∞)/Tm(r) in terms ofEq. (5) if the
size dependence ofh is neglected. In summary:

Tm(r)

Tm(∞)
= exp

[ −(α − 1)

(r/r0) − 1

]
(6)

In Eq. (6), α has been deduced for low-dimensional materials
with free surface as follows[5]:

α = 2Svib(∞)

3R
+ 1 (7)

where Svib(∞) denotes the vibrational melting entropy
and R shows the ideal gas constant. Since the overall
bulk melting entropySm(∞) consists, at least, of three
components: configurational entropySconf(∞), vibrational
Svib(∞) and electronicSel(∞) [5], Sm(∞) = Svib(∞)
+ Sconf(∞) + Sel(∞). Sconf(∞) is given by[5], Sconf(∞) =
−R(xA ln xA + xB ln xB) where xA and xB are the molar
fractions of the crystals and vacancies, respectively, with
an assumption that the melting of crystals leads to solely
additional vacancies in liquid while the crystals remain a
quasi-crystalline structure[13]. For the melting process,
xA = 1/(1+�Vm/Vs), xB = 1−xA where�Vm = V1−Vs
with V1 and Vs being molar volume of liquid and crystal,
respectively. For metallic, organic and polymer crystals, the
type of chemical connection does not vary during the melt-
ing transition[13]. Thus,Sel(∞) ≈ 0 [5] and Svib(∞) =
Sm(∞) − Sconf(∞), or:

Svib(∞) = Sm(∞) + R(xA ln xA + xB ln xB). (8)

Fig. 1. Tm(T) functions of the radius of Au crystals denoted as a solid
line in terms of Eqs. (4), (6)–(8). (	) [14], (�) [15], (�) [16] and
(�) [17] denote experimental results while (�) [18] shows a com-
puter simulation result. The necessary parameters inEqs. (4), (6)–(8)
are as follows:h = 0.2884 nm [9], Tm(∞) = 1337.58 K [19] and
Svib(∞) = 7.78 J mol−1 K−1 determined byEq. (8)with �Vm/Vs = 5.1%
[20] and Sm(∞) = 9.38 J mol−1 K−1 [19]. d = 0 for the experimental
result [17] and the computer simulation result[18] where the particles
have a sphere shape.d = 1 for experimental data[14,15] where the par-
ticles are deposited on inert substrates in a disk-like shape, which have a
quasi-dimension of one[3]. In another experiment[16], silica-encapsulated
sphere particles are measured. Since the particles have not free surface,
the corresponding� is smaller than 2Svib(∞)/(3R)+1 shown inEq. (7).
Because the decrease ofα has the same effect of increase ofr0 as seen
in Eq. (6), d = 1 is taken to avoid any detailed analysis with some as-
sumptions on the chemical interaction between the surface atoms and the
silica [16].
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Fig. 2.Tm(r) functions of the radius of Ag crystals denoted as a solid line
in terms of Eqs. (4), (6)–(8). (�) shows the experimental results[16].
The related parameters in the above equations are:h = 0.2989 nm[9],
d = 0, Tm(∞) = 1234 K [19], Svib(∞) = 7.98 J mol−1 K−1 determined
by Eq. (8) with �Vm/Vs = 3.3% [20] and Sm(∞) = 9.16 J mol−1 K−1

[19].

3. Results and discussion

In light of Eqs. (4), (6)–(8), Tm(r) function is obtained.
Figs. 1 and 2present comparisons between the model pre-
dictions and the experimental and computer simulation re-
sults ofTm(r) for Au and Ag nanoparticles. As shown in the
figures, the model predictions are in good agreements with
the both experimental and computer simulation evidences
whereTm(r) decreases asr andd decrease.

Tm (r) is usually considered as a linear relationship be-
tweenTm(r) and 1/r simply deduced by consideration on
the surface/volume ratio, i.e. the ratio between the surface
area and volume, which implies that the physical properties
of atoms within the nanocrystals are the same of that of
the corresponding bulk crystals and the melting point de-
pression may be induced solely by the increase of surface
atom percentage as the size of the nanocrystals decreases
[5]. The effect of dimension onTm(r) comes from the same
consideration since the surface/volume ratio is different
for different dimensions. In our model, size-dependence of
Tm(r) is stronger than the above linearity whenr is in the
mesoscopic size range (whenr < 5 nm). This non-linearity
betweenTm(r) and 1/r in Eq. (6) is produced by our essen-

tial assumption that� is size-independent[2,5], which im-
plies that the interior atoms of nanocrystals have additional
contribution on the melting temperature depression.

4. Summary

In summary, our model for the size- and dimension-
dependent melting temperatures of low-dimensional crystals
is introduced to predict that of noble crystals. The predic-
tions correspond to the experimental results and computer
simulation results of Au and Ag nanocrystals well.
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