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Table 2.1. Similarities in Characteristics of Photons and Electrons

Photons Electrons
Wavelength
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Eigenvalue (Wave) Equation
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Free-Space Propagation
Plane wave Plane wave:

F = {%)Eo(e"k"'—“” + gikerwf)
k = wavevector, a real quantity

Jr= t—_.(efl\"l'—wf + ‘_?—I'k'l'+m?)
k = wavevector, a real quantity

Interaction Potential in a Medium

Dielectric constant (refractive index) Coulomb interactions

Propagation Through a Classically Forbidden Zone
Photon tunneling (evanescent wave) with
wavevector, Kk, imaginary and hence
amplitude decaying exponentially in the
forbidden zone

Electron-tunneling with the amplitude
(probability) decaying exponentially in
the forbidden zone

Localization
Strong scattering derived from large variations
in dielectric constant (e.g., in photonic crystals)

Strong scattering derived from a large
variation in Coulomb interactions (e.g., in
electronic semiconductor crystals)

Cooperative Effects
Nonlinear optical interactions Many-body correlation
Superconducting Cooper pairs

Biexciton formation

Both photons and electrons
are elementary particles that
simultaneously exhibit particle
and wave-type behavior.

Photons and electrons may
appear to be quite different as
described by classical physics,
which defines photons as
electromagnetic waves
transporting energy and
electrons as the fundamental
charged particle (lowest mass)
of matter.

A quantum description, on the
other hand, reveals that
photons and electrons can be
treated analogously and
exhibit many similar
characteristics.



Free-Space Propagation of photons and electrons

In a “free-space” propagation, there is no interaction potential or it is constant in space.
For photons, it simply implies that no spatial variation of refractive index n occurs.

The wavevector dependence of energy is different for photons (linear dependence) and electrons (quadratic dependence).
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Figure 2.1. Dispersion relation showing the dependence of energy on the wavevector for a
free-space propagation. (a) Dispersion for photons. (b) Dispersion for electrons.

For free-space propagation, all values of frequency for photons and energy E for electrons are permitted.
This set of allowed continuous values of frequency (or energy) form together a band,
and the band structure refers to the characteristics of the dependence of the frequency (or energy) on the wavevector k.



Confinement of Photons and Electrons
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In the case of photons,

the confinement can be introduced by trapping light in a region of high refractive index or with high surface reflectivity.

The confinement of electrons also leads to modification of their wave properties and produces gquantization

—that is, discrete values for the possible eigenmodes.
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Figure 2.2. Confinements of photons and electrons in various dimensions and the configura-
tions used for them. The propagation direction is z.
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The field distribution and the corresponding propagation constant
are obtained by the solution of the Maxwell’'s equation and
imposing the boundary conditions (defining the boundaries of the
waveguide and the refractive index contrast). The solution of the
wave equation shows that the confinement produces certain
discrete sets of field distributions called eigenmodes, which are
labeled by quantum numbers (integer).

The corresponding wave equation for electrons is the
Schrddinger equation. The potential confining the electron is the
energy barrier—that is, regions where the potential energy V is
much higher than the energy E of the electron.

12\
E= ij{\ Via(z)(eP? + e7F) P (x)= ’—’(7) (e — g i)
N4l ny<ny V=| V=0 |V=m
BAWA S A I
\/ \/
L\ TE, \ A
1 WV
/\ TE, W,
(A) (B)

Figure 2.3. (A) Electric field distribution for TE modes n = 0, 1, 2 in a planar waveguide
with one-dimensional confinement of photons. (B) Wavefunction | for quantum levels » = 1,

2, 3 for an electron in a one-dimensional box.
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Propagation Through a Classically Forbidden Zone: Tunneling E I m——.

In a classical picture, the photons and electrons are completely confined in the regions of confinement.

For photons, it is seen by the ray optics for the propagating wave as shown in Figure 2.2.

Similarly, classical physics predicts that, once trapped within the potential energy barriers where the energy E of an electron is
less than the potential energy V due to the barrier, the electron will remain completely confined within the walls.

However, the wave picture does not predict so.
The field distribution of light confined in a waveguide extends beyond the boundaries of the waveguide.

Photon |leakage Electron leakage

ny |ny<n, This light leakage generates an electromagnetic field
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X In an analogous fashion, an electron shows
a leakage through regions where E < V.
The wavefunction extending beyond the box into the

Wavefunction

Figure 2.5. Schematic representation of leakage of photons and electrons into classically en- region of V > E decays exponentially, just like the
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Figure 2.6. Schematics of electron and photon tunneling through a barrier.
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Localization Under a Periodic Potential: Bandgap I ——

Both photons and electrons show an analogous behavior when subjected to a periodic potential.

Figure 2.7. Schematic representation of an electronic crystal (/eff) and a photonic crystal (right).

The solution of the Schrodinger equation for the energy of electrons, now subjected to the periodic potential V, produces a
splitting of the electronic band: the lower energy band is called the valence band, the higher energy band is called the conduction
band. These two bands are separated by a “forbidden” energy gap, the width of which is called the bandgap.

In the case of a photonic crystal, the eigenvalue equation for photons can be used to calculate the dispersion relation o versus k.
A similar type of band splitting is observed for a photonic crystal, and a forbidden frequency region exists between the two bands,
similar to that between the valence and the conduction band of an electronic crystal, which is often called the photonic bandgap.
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Figure 2.8, Schematics of electron energy in (a) direct bandgap (e.g., GaAs, InP, CdS) and Figure 2.9. Dispersion curve for a one-dimensional photonic crystal showing the lowest en-
(b) indirect bandgap (e.g., Si, Ge, GaP) semiconductors. ergy bandgap.



NANOSCALE OPTICAL INTERACTIONS

Table 2.2. Methods for Nanoscale Localization of Electromagnetic Field

MNanoscale localization

Lateral Nanoscopic Localization — NSOM, SNOM

| .
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Evanescent wave Surface plasmon film \
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———— } e e
| | near-field el
Apertire necr-field
. . . . P
Total internal reflection Optical waveguide f k
|
Apertureless confinement a nanoscopic Confinement by an aperture
tip to enhance local field near-field propagation

Axial Nanoscopic Localization - Evanescent Wave Axial Nanoscopic Localization - Surface Plasmon Resonance
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The penetration depths d,, for the visible light are 50—100 nm. kep = (0/c) [(e,80)/(€,, T € )]V2
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NANOSCALE CONFINEMENT OF ELECTRONIC INTERACTIONS  EC i mm———

Table 2.3. Various Nanoscale Electronic Interactions Producing Important Consequences
in the Optical Properties of Materials

Nanoscale Electronic Interactions

Quantum confinement effects New cooperative optical transitions
Confinement of electronic motion
(localization) to produce new opfical
transitions and modified optical interactions

Nanoscopic Interactions to control dynamics
Control of local interactions and phonon density
of states to manipulate radiative and nonradiative

transitions
[ | |
New cooperative absorption Nanoscale electronic energy transfer | | Cooperative Emission
Two or more neighboring atoms | | Eyciton transfer and fluorescence Cooperative emission
or molecules within nanometer resonance energy transfer (FRET) by an ion pair through
distances absorbing collectively a virtual state
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Quantum-Confined Materials - INORGANIC SEMICONDUCTORS N s

Table 4.1. Semiconductor Material Parameters in the bulk phase

Periodic Bandgap Bandgap Exciton Exciton
Table Energy Wavelength Bohr Radius Binding
Material Classification (eV) (pm) (nm) Energy (meV)
CuCl [-VII 3.395 (.36 0.7 190
Cds [I-VI 2.583 (.48 2.8 29
CdSe [I-V1 1.89 0.67 4.9 16
GaN -V 3.42 0.36 2.8
GaP -V 2.26 (.55 10-6.5 13-20
[InP -V 35 0.92 1.3 5.1
GaAs -V 1.42 0.87 12.5 5
AlAs -V 2.16 (.57 4.2 17
Si Y 1.11 1.15 4.3 15
Ge [V (.66 1.88 25 3.0
S1,_,.Ge, Y 1.15-0.874x [.08—1.42x (.85-0.54x 14.5-22x
+0.376x7 +3.3x7 +0.6x7 + 20x°
PbS [V-VI .41 3 1 & 4.7
AIN -V 6.026 0.2 1.96 &0

The bandgap can also be tuned by varying the composition of a ternary semiconductor
such as Al,Ga,_,As, which for x = 0.3 has a bandgap of 1.89 eV compared with 1.42 eV for pure GaAs.



Quantum-Confined Materials — Density of States
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Figure 4.3. Density of states for electrons in bulk conduction band together with those in

various confined geometries.
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A major factor in the expression for the strength of optical transition (often defined as the oscillator strength) is the density of states.

The density of states D(E), defined by the number of energy states between energy E and E + dE,

is determined by the derivative dn(E)/dE.

The density of states in the vicinity of the bandgap is relatively large compared to the case of a bulk semiconductor for
which D(E) vanishes. Hence, the oscillator strength in the vicinity of the bandgap is considerably enhanced for a quantum well

compared to a bulk semiconductor.



MANIFESTATIONS OF QUANTUM CONFINEMENT
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Size Dependence of Optical Properties. Quantum confinement produces a blue shift in the bandgap as well as appearance
of discrete subbands corresponding to quantization along the direction of confinement.
As the dimensions of confinement increase, the bandgap decreases; hence the interband transitions shift to longer
wavelengths, finally approaching the bulk value for a large width.

Increase of Oscillator Strength. Quantum confinement produces a major modification in the density of states both for valence
and conduction bands. The oscillator strength of an optical transition for an interband transition depends on the joint density of
states of the levels in the valence band and the levels in the conduction bands, between which the optical transition occurs.

New Intraband Transitions. In quantum-confined structures, there are sub-bands characterized by the different quantum
numbers (n =1, 2, .. .)These new transitions are in IR and have been utilized to produce inter sub-band detectors and lasers,

the most interesting of which are quantum cascade lasers

Increased Exciton Binding. Quantum confinement of electrons and holes also leads to enhanced binding between them and
thereby produces increased exciton binding energy. Thus, excitonic resonances are very pronounced in quantum-confined
structures and, in the strong confinement conditions, can be seen even at room temperature.

Increase of Transition Probability in Indirect Gap Semiconductor. In the quantum-confined structures, confinement of
electrons produces a reduced uncertainty Ax in its position and, consequently, produces a larger uncertainty Ak in its quasi-
momentum. Confinement, therefore, relaxes the quasi-momentum Ak selection rule, thus allowing enhanced emission to be

observed in porous silicon and silicon nanoparticles.

Confinerment increases the apparent energy gap
of a semiconductor nanocrystal
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Figure 2. Schematic of the effect of the decreased size of the box on tha
incressad anargy gap of a semiconductor quartum dot, and the resultant
lurninescent color change fram bulk matenials {eft) to small nanoarystals {right).

Table 4.2. Optics of Quantum Confined Semiconductors

Optical Transitions

|
Absorption

Luminescence

Interband:

Transition between
modified valence
and conduction

bands

| |
Intraband
(Inter-sub-band):

Photoluminescence:

Optically excited

Transition between emission
quantized sub-bands
of a band (e.g..

conduction band)

Electroluminescence:

Emission generated
by recombination
of electrically
injected electrons
and holes



Nanophotonics for Biotechnology and Nanomedicine

Table 13.1. Applications of Various Nanoparticles for Optical Diagnostics and Therapy

Nanoparticles
Optical D[Lgtmst[cs Thcrzlp}'
| | ym——
Bioimaging Optical tracking using nanoclinic _ i
_— Probe
® Quantum dots ® Magnetic therapy
¢ Up-converting nanophosphors * Gene therapy
® Encapsulated dyes
L ]gh t-activated thera Py Figure 13.6. Illustrated representation of a nanoclinic.
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Figure 13.12. Confocal fluorescence image of tumor cells treated with HPPH-doped
Wavelength (nm)

nanoparticles. (Inset:) HPPH fluorescence spectra taken from the cytoplasm of cell.



