= g

RESEARCH ARTICLE

Copyright © 2011 American Scientific Publishers
All rights reserved
Printed in the United States of America

Journal of
Computational and Theoretical Nanoscience
Vol. 8, 1134-1138, 2011

Many-Body Interaction and Computer Simulations for the
Cohesive Energy of Spherical Metallic Nanocrystals

Esam H. Abdul-Hafidh'*, T. Barakat?, and 0. M. Al-Dossary?

1 Physics Department, Yanbu University College-Royal Commission, P. 0. Box 31387, Yanbu 51000, Saudi Arabia
2physics Department, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia

Many-body interaction potential energy function is used to predict the structural stability and cohe-
sive energy of Molybdenum (Mo) and Tungsten (W) spherical metallic nanocrystals by computer
simulations. The model proposed is Ercok’s potential energy function comprising two- and three-
body terms. The model applies successfully to BCC elements and predicts the size dependence of
the cohesive energy of nanocrystals. This prediction agrees with experimental measurements on

Mo and W.
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1. INTRODUCTION

After the invention of the tunneling microscope in 1985,
it became possible to construct a crystal atom-by-atom,
leading to a new field of science called “nanoscience.”’
It is observed that the properties of materials at the nano-
scale level can be substantially different from macro-scale
levels. This is very apparent with nanocrystals, where
researchers verified experimentally and theorctically that
some intriguing magnetic, electric, optical, mechanical and
thermo-dynamical properties were not realized before with
large crystals, and this brought up a new range of promis-
ing applications. It is believed that these drastic changes
in the properties are due to the large ratio of the num-
ber of surface atoms to their volume in nanocrystals. On
this scale, it is also evident that structure transitions which
may occur under certain conditions lead to changes in the
physical and chemical properties of nanocrystals.

Up-to-date, most of the experimental work in
nanoscience falls into two broad categories: preparation
of nanocrystals,>” and measuring their magnetic, electri-
cal, etc., properties.*'* On the theoretical side,'>*" there
has been much effort expended towards modeling the
interatomic potential energy, which controls the internal
interactions within nanocrystals, using many approaches
like computer simulation, ab initio calculations and
other techniques to predict structure transition and super
characteristics. 4 '

*Author to whom correspondence should be addressed.
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Among many physical quantities, the cohesive energy is
of special interest since all the thermodynamical quantities
like heat capacity, surface tension, etc., may be derived
from it. The cohesive energy of a crystal is defined as
the energy that must be added to the crystal to separate
its components into neutral free atoms at rest, at infinite
separation.?® Cohesive energy depends on the size of nano-
crystals, type of atoms involved, the shape and structure.

For nanocrystals, a careful measurement of the cohesive
energy proved its size dependence,” while it is constarit
for bulk crystals. Many theoretical models and techniques
were developed to predict the size dependence of the cohe-
sive energy.'>?6 Although all of these models success-
fully predict the size dependence of the cohesive energy,
some of them were phenomenological'®?* and not compu-
tational in a sense they cannot justify some of the criteria
related to the crystals such as structure transition. Among
them, Qi et al.'"® modified a model upon calculating the
surface energy of a solid at O K. They did not pay any
attention to the structure or shape of the crystals. A differ-
ent approach was used by Sun et al.'” in the Bond-Length-
Strength (BLOS) model. The model indirectly accounts for
shape and size to calculate the melting temperature which
is related to the cohesive energy and predicts its behav-
jor well.'>"3%3! Nevertheless, the model ignored structure
and does not give any idea about structure transition. Both
Jiang et al.'® and Chun Cheng et al.?! groups used the same

_ model to predict the cohesive energy and fit that to exper-

imental data for Molybdenum (Mo), Tungsten (W),'® and
to Iron (Fe), Copper (Cu), Gold (Au)? respectively. The
two groups had good fit and showed the size dependence
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of the cohesive energy but the model’s deficiency was not
considering both the shape and structure of the crystal.
The liquid drop model applied successfully to explain the
mass of the atomic nuclei is used here by Nanda et al.”® to
justify the size dependence of the cohesive energy of low
dimensional systems. The expression for cohesive cnergy
given is exactly the same as that of Qi et al.,'® so it takes
care of size but neither of shape nor structure. A simple
model suggested by Qi et al.? to fit the experimental data
for Mo and W works well for that purpose, but the authors
made too many assumptions that left the model applicable
only under certain assumptions.

There are many research groups that used the semi-
empirical potential energy functions and computer simu-
lations to study the behavior of the cohesive energy of
nanocrystals. Qi et al.'® tried to fit the experimental data
of Mo and W by using the well known two-body Lennard-
Jones potential energy function (PEF). The size depen-
dence is again there but the ratio of the cohesive energy
of the nanocrystal to that of the bulk for the above men-
tioned elements did not match the data. Another problem
with this model is that it included only a two-body term
which is not enough for elements other than the rare gases
to give absolute stability of the system. Another group,
Barakat et al.?? used two-body PEF and achieved excel-
lent fit for Mo and W using Mie-Type potential function
with (m, k) as (6, 5). The use of this model had two main
problems. First, as the previous model, it includes only
two-body part and the second is that it contain two power
terms of the same order so that both of them are consid-
ered to be short range terms. It was implicitly assumed in
the model that long range interaction is ignored which is
physically unacceptable. Another good model that accom-
modates size, shape, and structure to calculate the cohesive
energy of a nmanocrystal was presented by Qi.*® But his
work is limited since it only applies to Chromium (Cr) and
was not generalized to other elements. The last model to
be discussed here is a phenomenological model by Aslam
et al.?* which uses empirical PEF that comprises two body
terms of long range as coulomb and Van Der Waals as
Lennard-Jones terms.

Recently our group? designed a model which includes
both two and three body terms in the PEE The two body
term was a Mie-Type with (i, &) as (8, 4). So one of them
is for short range and the other is for long range terms. The
three bodies were Teller-Axilord triple-dipole term. The
only assumption made for this model was to consider
the crystal as spherical, so shape factor was ignored. The
model applies to all elements in the periodic table excep-
tionally and shows stability. The size dependant potential
parameter (SDPP) method was used in that project.

In this paper the energy minimization (EM) method has
been proposed to perform the cohesive energy and struc-
tural stability calculations. This method is a subcategory
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of molecular dynamics where the temperature is consid-
ered to be 0 K. The method although simple in principle,
proves to be powerful in the results it predicts.

2. MODEL AND POTENTIAL ENERGY
FUNCTION

To construct the model, we assume that a spherical metal-
lic nanocrystal in the nanometer size is generated from
ideal BCC crystalline structures, and its internal structure
is the same as the bulk crystal. An atom is taken as a
central one and the first nearest-neighbor distance is con-
sidered as the radius of the first shell and second nearest-
neighbor distance as the radius of the second shell, and
so on. The number of shells in the nanocrystal, the radius
of the nanocrystal R, the number of atoms in each shell
and the total number of atoms (N) in the nanocrystal can
all be easily obtained.

The potential energy of N interacting atoms can be
expressed as a many-body expansion:

® =yt byt bt M

Where ¢,, ¢3,... are the two, three-body...interaction
energies respectively. In the present work, two and
three body atomic interactions are adopted to simulate
and reproduce the cohesive energy and structurc-related
propertics. The two body PEF, uses simplified statisti-
cal mechanical formalism for calculating various thermo
dynamical properties and enabled many early researchers
to run simulation calculations with relatively less powerful
computers. However, it produces results inconsistent with
many experiments.®® In addition, the first order approx-
imation (two-body PEF) is particularly inappropriate for
atoms other than those with a closed-shell structure.?!

An empirical potential energy function PEF to describe
the three-to-thirteen-atom microclusters was suggested in
1989 Refs. [32, 33] and modified in 1990** by Erkoc. This
PEF works well for the microclusters of elements at dif-
ferent structures.’>>* There are different empirical PEF’s
to describe the interatomic interaction of bulk and small
clusters, like those suggested by Person et al., Stillinger
and Weber, and Tersoff. Although their predictions of the
structural stability and energy are fairly good, they require
an evaluation of three, nine, and eleven parameters respec-
tively. However, the PEF proposed by Erkoc (EPEF) needs
the evaluation of only two parameters. The explicit form
of EPEF for N interacting atoms is:

D = c,b, + 305 2
Where 5
N
b= Z U(r;, "j) 3 (3)
l.é:il
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And The parameters ¢, and ¢; can be found by solv-
¢3= Y Wlr,ry,nl (4) ing Egs. (14) and (15) simultaneously by calculating
'}féf;‘ (IJ%,qi;,d); and ¢}, the values of ¢, and ¢; are deter-
mined as:
¢, and ¢; arc the two-body and three-body interac- : , ,
tion cnergies respectively. The two-body PEF is a com- c3=P/[$;— $30,/P)] (183)

bination of a repulsive and an attractive parts factorized
by Gaussian terms. The three-body PEF is expressed in
terms of the two-body part. More explicitly U(r;, ;) and = —c3P5/d; (19)
W(r;, r;, ] are expressed as:

and

2n n
o =2 2 TN ol i
U("p "j) = A[(r_) e~ 2elrulnl” (—) eelrilr] ] 5) Table I.  Spectroscopic properties of Mo and W.

ij Tij
Element  r, [A] —g [eV] k[eV/A?] d,, [A] ¢ [A]

And

Mo 1938 438 40.61 1R 6%
Win rj. i = Uyfige+ U Sy + UpFja © 2.425 5.00 20,00 274 -855

With T Reprinted with permission from [35], M. D. Morse, Chem. Rev. 86, 1049, (1986).
Jip e AT RS (7) o1

Similarly, f;;; and fj;; have the same form as f;; with suit-

able indices, r; is the interaction distance between atom i (@) 057330

and atom j. The parameters A, a and n are found in terms .
of the force constant k, equilibrium distance r, and equi- : ]
librium energy &, through the three stability conditions: 0.57326
0.57324
Uylry=r, = &0 ® 0.57322 -
aUu] =0 ©) &' 057320
LT 057318 -
12U, 0.57316 ﬁ
i o
o =k (10) 0.57314 -
ij dry=r j
0.57312
Simple calculations give the values of the three parameters 057310 : , : B s
as: 1 2 3 4 5 6
) Rewt
A=—4g, (11)
(b) -2.134
a=In(2) (12) :
-2.136
s 2138 .
/ 2 =245
rgk |
= —2a 13
Y (13) -2.140
The total interaction energy is expressed as: & -2.142
D =c,,+ 305 (14) —2'1441
: ~2.146 .
where ¢, and c; are free parameters to be determined
through the stability condition d¢/aV =0, -2.148
which leads to the relation: ]
-2.150 T T — T
1 2 3 4 5 6
Pty =0 (15) Ry
where Fig. 1. (a) Size dependence of the two-body part of EPEF (c;) of body-
¢y =dp,/dV : (16)  centered cubic structure of Molybdenum as a function of nanocrystal size
5 R, (b) Size dependence of the three-body part of EPEF (c,) of body-
and ) centered cubic structure of Molybdenum as a function of hanocrystal
Py =a¢p;/0V (17)  size R,
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3. NUMERICAL RESULTS
AND DISCUSSION

The above described model and PEF have been investi-
gated for both Molybdenum and Tungsten metallic nano-
crystals. The parameters used in the calculation of the
cohesive energy of Mo and W are given in Table .

The parameters A and n are calculated directly from
Egs. (11)~(13), while the parameters ¢, and c; are func-
tions of the number of atoms in the nanocrystal N as
shown in Figures 1(a, b) for Mo and Figures 2(a, b) for W.
So ultimately ¢, and ¢; with A and n are given in Table I1.

The parameters ¢, and c¢; decide the contribution of the
two and three-body parts of the cohesive energy. The three-
body part of EPEF is positively contributing to the total
energy of the crystal and works as a fine tuning adjustment
to the cohesive energy. As can be seen from the Figures 1
and 2, ¢, and ¢, are size dependant that reach- to seven

(a) 0.2070

0.2068
0.2066

0.2064 -
0.2062 -
&' 0.2060 -
0.2058 -
0.2056 -
0.2054 -
0.2052 -

0.2050 +— -
1 2 3 4 5 6

(b) -0.133

-0.134+
~0.135
-0.136 -
-0.137 -

§ -0.138 4
-0.139
-0.140

-0.141 4
—-0.142 1

~-0.143

1 2 3 4 5 6
Rcut

Fig. 2. (a) Size dependence of the two-body part of EPEF (c,) of body-
centered cubic structure of Tungsten as a function of nanocrystal size
R, (b) Size dependence of the three-body part of EPEF (c,) of body-
centered cubic structure of Tungsten as a function of nanocrystal size
R..
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Table II.  The two and three-body parts of EPEF (c, and ¢;) for BCC
structure of Molybdenum and Tungsten and the calculated values of A
and n.

Element  Structure C, ¢y —A [eV] n
Mo BCC 0.573252 —2.146064 17.52 2.786416
N4 BCC 0.206602  —0.140455 20.00 2.043174

digit accuracy-their saturation values at a cut-off radius of
the nanocrystal of 4d,, for the two elements considered
in this work. This conclusion was verified previously for
many other elements.??

The energy minimization (EM) method has been imple-
mented by employing the PEF and search over configu-
ration space until the minimum is located. According to
EPEF the minimum cohesive energies for both Mo and W
have been calculated as a function of N, and the relative
minimum energy ¢,/¢, has been plotted for BCC struc-
ture as shown in Figure 3, where ¢, is the bulk cohesive
energy listed in Table I. The normalized experimental data
reported by Kim et al. in 2002 Ref. [29] are denoted by
arrows for Mo at N =2000 and for W at N =7000 atoms.
It is clear from the figures that the cohesive energy is size
dependant and converges to 63.3% of the bulk at N = 6183
(BCC-Mo) and to 58.2% of it at N = 6183 (BCC-W). The
predicted calculation of the cohesive energy using EPEF
model is lower than the reported experimental results of
Mo and W. A quantitative comparison between the exper-
imental and theoretical results for the relative cohesive
energies for BCC is presented in Table IIT at N = 2000
and 7000 atoms.

However, under the assumptions made where the inter-
atomic distances at equilibrium were equal and the
nanocrysatl is spherical, the present results are acceptable.

As was mentioned before, the only available experi-

mental values of the cohesive energies are those of Mo
and W nanocrystals.?**¢ It is reported that the cohesive

0.8

07 - - w\
0.6 \ Mo

g
& 0s-
0.4 - l —O0— 1.23
—e— 0.72
0.3 —k—Ho
—_—— W
0.2 T v T T T T T T
0 1000 2000 3000 4000 5000 6000 7000

N.

Fig. 3. Crystal size dependence of the relative cohesive energy of body- -

centered cubic spherical Molybdenum and Tungsten nanocrystals accord-
ing to EPEF.
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Table III. comparison between the experimental and theoretical results

for the relative cohesive energies for both BCC and FCC according to
EPEF model.

Number of Theoretical Theoretical Mie-type Experimental

Element atoms N EPEF (m, k) is (12, 6)"° ratio

Mo 2000 0.58 0.84 0.68562
7000 0.633 0.87 —_

W 2000 0.56 0.84 0.75121
7000 0.582 0.87 —_

energy of Mo nanocrystal of the size N = 2000 is
—4.25 cV/atom, whereas the cohesive energy of the bulk
Mo is —6.2 eV/atom. On the other hand, for the W
nanocrystal of size N = 7000, its cohesive energy is
—6.42 eV/atom and that of the corresponding bulk W is
—8.55 eV/atom. As shown in Figure 3, the relative cohe-
sive energy of both Mo and W initially increases rapidly
with increasing the size of the nanocrystal reaching 58%
and 56% of their bulk values for the two elements Mo
and W respectively at N = 2000 atoms. On increasing the
number of atoms, it exhibits a gradual increase up to the
maximum value reached which was 10000 atoms.

4. CONCLUSION

In conclusion, the use of the many-body Ercok potential
energy function has been extended to predict the cohesive
energy of spherical metallic nanocrystals. The calculations
are supported by experimental results and show reasonable
consistency. The cohesive energy decreases as the nano-
crystal size decreases. The dependence of the cohesive
energy on the range of the potential is demonstrated as
well. The model and method used in this project can be
used to study the properties of nanocrystals.
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