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Abstract
The aim of this study is to demonstrate the comparison of an artificial neural network (ANN)

and an adaptive neuro fuzzy inference system (ANFIS) for the prediction of the coefficient of
performance (COP) for a water purification process integrated in an absorption heat transformer
system with energy recycling. ANN and ANFIS models take into account the input and output
temperatures for each one of the four components (absorber, generator, evaporator, and condenser),
as well as two presures and LiBr+H2O concentrations. Experimental results are performed to verify
the results from the ANN and ANFIS approaches. For the network, a feedforward with one hidden
layer, a Levenberg-Marquardt learning algorithm, a hyperbolic tangent sigmoid transfer function
and a linear transfer function were used. The best fitting training data set was obtained with three
neurons in the hidden layer. On the validaton data set, simulations and experimental data test
were in good agreement (R2>0.9980). However, the ANFIS model was developed using the same
input variables. The statistical values are given in as tables. However, comparaison between two
models shows that ANN provides better results than the ANFIS results. Finally this paper shows
the appropriateness of ANN and ANFIS for the quantitative modeling with reasonable accuracy.
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1. Introduction 
 
The absorption heat transformer is a system that consists of a thermodynamic 
device capable of producing useful heat at a thermal level superior to the one in 
the source (Torres, 1997). This heat transformer plays a special role in the process 
industries to minimize the energy consumption, because, it could be used in any 
other system that requires a temperature greater than the one provided by the 
origin. In addition, an absorption heat transformer is used extensively and 
regularly in water purification process. It is known that the coefficient of 
performance (COP) is a very important variable for determining the performance 
of an absorption heat transformer according to Equation (1). This COP is defined 
as the heat delivered in the absorber per unit of heat load supplied to generator 
and evaporator (Huicochea et al., 2004). 
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(1) 

 
However, to describe the behavior of the COP, Siqueiros and Romero 

(2007) have used a thermodynamic model to simulate COP values for a water 
purification process integrated to an absorption heat transformer. This model was 
based on a set of assumptions as a heat loss, pressure drops in the tubing, 
whenever these considerations are so difficult to be fulfilled in practice. Thus, 
controlling this process is impossible according to the thermodynamic model in 
steady-state. Therefore in practice an artificial intelligence tools such as an 
artificial neural network (ANN) can provide a new approach to process without 
take into account any previous assumptions (Hernandez et al., 2008 and 
Hernandez et al., 2009). ANN is a collection of interconnecting computational 
elements which function like neurons in biological brain. It has the ability to 
model processes by learning from input and output data, without mathematical 
knowledge of the process, requiring less formal statistical training, ability to 
estimate important parameters with only based on the poor available information, 
ability to implicitly detect complex nonlinear relationships between dependent 
and independent variables, ability to detect all possible interactions between 
predictor variables, ability to approximate virtually any function in stable and 
efficient way, performs better when there is non linear spatial trends in the 
database and its availability of multiple training algorithms. Consequenly, the 
COP could be calculated on-line, when the input variables are well known in the 
water purification process integrated to the heat transformer with energy 
recycling.  

Fuzzy propositions are statements that pertain with fuzzy variables. The 
concept of a fuzzy set is the basis of a fuzzy logic. A fuzzy set is a set without a 
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crisp, clearly defined boundary. Adaptive neuro fuzzy inference system (ANFIS) 
and ANN can be viewed as strong tools in the statistical pattern recognition 
algorithm and to prepare an equivalent model by virtue of their capabilities of 
function approximation and classification (Singh et al., 2007). Fuzzy models offer 
advantages over mathematical ones, the inference process is close to human 
thinking and it is easier to deal with complex non-linear systems. Moreover, these 
approaches can be useful to non-expert modeling people.  

The ANFIS function can be studied through the fuzzy toolbox of Matlab 
(Jang, 1993). ANFIS stands for adaptive neuro-fuzzy inference systems and tunes 
a fuzzy inference system with a back-propagation algorithm based on collection 
of input/output data. The fuzzy modeling and identification toolbox constructs 
Takagi–Sugeno fuzzy models from data by means of product-space fuzzy 
clustering using the Gustafson– Kessel algorithm (Babuska, 1998). Fuzzy systems 
have gained increasing popularity in engineering over the past few decades, 
finding a large variety of applications in control theory, pattern recognition, 
power systems and expert predictions systems (Jang and Gulley, 1996). In 
addition to the above advantages, fuzzy models can be combined with neural 
networks to create ANFIS which the advantages are: It is computationally 
efficient, it works well with linear techniques, it works well with optimization and 
adaptive techniques, it has guaranteed continuity of the output surface, it is well 
suited to mathematical analysis. We have found limited published work in relation 
to the modeling of energy use and energy efficiency for heating and cooling 
process. In the literature, there are a lot of studies about ANN and ANFIS 
interested in the energy systems. Kalogirou (2000) examined applications of ANN 
for energy systems. Bechtler et al (2001a) illustrated an ANN model for 
estimation the steady-state performance of a vapour-compression heat pump. 
Swider (2003) made a comprehensive comparison of empirically based models 
for steady state modeling of vapour-compression liquid chillers. Yang et al (2003) 
developed an optimized ANN model to determine the optimal start time for a 
heating system in a building. Arcaklıoglu et al (2004) determined the performance 
of a vapour-compression heat pump using ANN. Ertunc and Hosoz (2006) used 
the ANN approach to estimate various performance parameters of an R134a 
refrigeration system employing an evaporative condenser. Ceylan and Aktas 
(2008) have presented a hazelnut dryer through heat pump using ANN. 
Hernández et al. (2008) developed a forcasting model for a water purification 
process integrated in an absorption heat transformer using ANN to obtain on line 
prediction of COP. Sahu et al (2008) developed the prediction model of 
spontaneous heating susceptibility of coals with fuzzy expert system and ANN. 
Esen and Inalli (2010) described the applicability of ANN and ANFIS to 
estimating the performance of a vertical ground source heat pump system. On the 
other hand, in general exists others techniques trying to solve diverse problems of 
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simulation and optimization in the chemical engineering process, as monte carlo 
method, genetic algorithms, particles swarm optimization, inverse neural network 
(Chang et al., 2011; El Hamzaoui et al., 2010; El Hamzaoui et al., 2011; 
Gharebagh and Mostoufi, 2004; Hamidipour et al., 2005; Hernández et al., 2009; 
Iranshahi et al., 2004; Mostoufi et al., 2005 and Cortés et al., 2009). 

This paper presents the COP prediction for the integration of a water 
purification process in a heat transformer with energy recycling, with the help of 
adaptive neuro fuzzy inference system and compared with commonly used 
prediction tool like artificial neural networks. Statistical analysis has been carried 
out to estimate the statistical parameters of COP values. The validation of the 
models is made up through experimental data reported by (Morales, 2005). 

 
2. System description and experimental data 
 
Figure. 1 shows a schematic diagram for a heat transformer. Useful heat (QAB) is 
the result of the reaction between working fluid vapor and absorbent solution 
(which comes from the evaporator and generator, respectively). After this process, 
a diluted water/LiBr solution, goes to the generator. In the generator, the aqueous 
solution receives a quantity of heat (QGE) from an external heat supply. Under 
these conditions, working fluid steam leaves the generator and goes through a 
condenser where it loses heat (QCO) and the fluid is condensed. This condensate 
goes to the evaporator where external heat (QEV) is supplied and the working fluid 
evaporates at high pressure and goes to the absorber. At the same time, a 
concentrated water/LiBr solution goes to the absorber, and at this point, the cycle 
starts again. Also, it can be observed that the heat transformer is integrated  to the 
water purification system. The absorber gives the unique useful heat delivered 
(QAB) in the heat transformer. QAB  is used to heat the impure water until it reaches 
its boiling point and partly evaporates. The two phases (liquid water and steam) 
leave the absorber and are separated through a phase separator. The liquid phase 
returns to the suction pump and the steam produced goes through an auxiliary 
condenser where heat is transferred as steam condenses while the heat source 
stream is heated (Siqueiros et al., 2007). In addition on the above of this Figure 
shows, also the process of water purification system integrated to a heat 
transformer with heat recycling in the heat source. (Huicochea and Siqueiros, 
2010). 

Experimental database provided by (Morales, 2005) consists of different 
COP values, obtained from a portable water purification process coupled to an 
absorption heat transformer with energy recycling. The experimental data set was 
obtained at different initial concentration of LiBr in LiBr+H2O mixture, different 
temperatures in the absorber, the generator, the evaporator, and the condenser as 
well as different pressures in the absorber and the generator. The transitory and 
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steady states were taken into account for each initial concentration of the mixture. 
After 2 h from start-up, data were collected for 4h. The experiments were carried 
out at eight different initial conditions with at least two replicates. The 
arrangement was 8 x 2 with 4 h of information acquisition. Thus, a database of 
11882 samples was obtained. A summary of 16 operating parameters (10 levels of 
temperatures, 4 of concentrations and 2 of pressures) is shown in Table 1. The 
thermodynamic properties of the LiBr + H2O mixture were estimated with Alefeld 
correlations cited by (Torres, 1997). The input and output temperatures of each 
component (AB, GE, CO and EV) were obtained experimentally. At the same 
time, the pressure of two components (AB and GE) was registred with a 
temperature pressure acquisition system (thermocouple conditioner and Agilent 
equipment with commercial software). The input and output concentrations in the 
AB and GE were established by a refractometer (refraction index). In this process, 
LiBr + H2O mixture was used as the working mixture in the absorber and 
generator, while only H2O was used in the evaporator and condenser. 

 

 

Fig. 1 Schematic diagram of the integration of the water purification process 
to an absorption heat transformer with energy recycling. The continuous line 
(-) represents the absorption heat transformer, the line and point (- . -) are 
the water purification process and the dotted lines (….) are the recycling 
energy. 

4

Chemical Product and Process Modeling, Vol. 7 [2012], Iss. 1, Art. 7

Brought to you by | Biblioteca Nacional (Biblioteca Nacional)
Authenticated | 172.16.1.226

Download Date | 5/25/12 5:05 PM



Table 1 Experimental operation range conditions studied to obtain the COP 
values 
   Variables                            Mean±Standard deviation Limiting conditions 

Operation parameters, °C 

Tin.GE-AB 

 

88.60±1.99 

 

76.29-91.53 

Tin.EV-AB 83.96±2.39 74.56-89.93 

Tout.AB-GE 93.85±2.28 84.31-98.27 

Tin.AB-GE 87.17±1.53 74.99-92.58 

Tout.GE-CO 88.60±1.99 76.29-91.53 

Tout.GE-AB 82.03±0.88 77.03-83.89 

Tin.CO 48.67±3.47 40.37-65.03 

Tout.CO 30.44±1.53 26.77-33.79 

Tin.EV 35.57±7.70 28.52-85.33 

Tout.EV-AB 83.96±2.40 74.56-89.93 

Operational parameters, %   

Xin.AB 53.84±1.31 51.66-55.36 

Xout.AB 52.77±1.33 50.75-54.36 

Xin.GE 52.76±1.32 50.75-54.36 

Xout.GE 55.01±1.03 53.16-56.07 

Operational parameters, in 

Pascal (Pa) 

(absolute) 

 

  

PAB 8.64±1.12 7-11.5 

PGE 20.54±0.49 19-21.10 
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  Fig. 2 Recurrent network architecture for COP values and procedure used for neural network learning 

Table 2  Comparison of 10 backpropagation algorithms with three neurons in the hidden layer 

Backpropagation algorithms Function 
 

RMSE 
 

R2 
RSD 
 % 

Best linear 
equation 

Levenberg-Marquardt  trainlm  7105219.9   998.0  4109343.2   Y=0.998X+0.306 

Batch gradient descent traingd  6103247.8   988.0  0026.0  Y=0.986X+0.927 

Batch gradient descent with 
momentum traingdm  5108918.7   987.0  0243.0  Y=0.988X+0.837 

Polak-Ribiere conjugate gradient  traincgp  5109934.7   979.0  0246.0  Y=0.957X+2.53 

Scaled conjugate gradient trainscg  4104627.6   974.0  1992.0  Y=1.020X-0.783 

BFGS quasi-Newton trainbfg  4109871.6   971.0  2153.0  Y=0.982X+1.23 

Powell-Beale conjugate gradient  traincgb  4109997.6   965.0  2157.0  Y=0.960X+2.03 

One step secant backpropagation trainoss  3109287.6   782.0  1352.2  Y=0.617X+45.3 

Fletcher-Reeves conjugate gradient traincgf  2104159.6   725.0  7716.19  Y=0.425X+34.8 

Variable learning rate  traingdx  1109781.6   718.0  0416.215  Y=0.386X+38 
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3. Materials and methods 
 
3.1. Artificial neural network 
 
The databases previously mentioned in the section 2 was successfully used to 
train the ANN model using backpropagation procedure, in order to predict the 
COP in water purification systems integrated to a heat transformer with energy 
recycling. On the other hand, as illustreted in Figure 2,  we have proven that three 
layers ANN and three neurons in the hidden layer, could successfully predict the 
experimental results about the COP’s system prediction in this article.  

However, in order to determine the best backpropagation training 
algorithm, ten backpropagation algorithms were studied, Table. 2 shows a 
comparison of different backpropagation training algorithms. Levenberg-
Marquardt backpropagation training algorithm could have smaller mean square 
error  RMSE  and relative standard deviation  RSD , respectively. In addition, 
we found training with Levenberg Marquardt algorithm can run smoothly in 
computer with lower expanded memory specification (EMS), and the training 
time is quickly, than the other backpropagation algorithms. Because, the 
Levenberg-Marquardt algorithm was designed to approach second order training 
speed without having to compute the Hessian matrix. When the performance 
function has the form of a sum of squares (as is typical in training feed-forward 
networks), then the Hessian matrix can be approximated as: 

 
JJH T  (2) 

 

And the gradient can be computed as: 

eJg T  (3) 

 
Where J is the Jacobian matrix that contains first derivatives of the network 
errors with respect to the weights and biases, and e  is a vector of network errors. 
The Jacobian matrix can be computed through a standard backpropagation 
technique that is much less complex than computing the Hessian matrix. The 
Levenberg- Marquardt algorithm uses this approximation to the Hessian matrix in 
the following Newton like up date: 
 

  eJIJJXX TT
kk

1

1



    (4) 
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When the scalar   is zero, this is just Newton’s method, using the approximate 
Hessian matrix. When   is large, this becomes gradient descent with a small step 
size. According to Hagan and Menhaj (1994), Newton’s method is faster and 
more accurate near an error minimum, so the aim is to shift toward Newton’s 
method as quickly as possible, thus   is decreased after each successful step 
(reduction in performance function) and is increased only when a tentative step 
would increase the performance function. In this context, the performance 
function is always reduced at each iteration of the algorithm (Khataee and Kasiri., 
2010). That’s why for these arguments, the Levenberg-Marquardt algorithm was 
considered the training algorithm in the present study. 
 However, the performance of the ANN model was statistically measured 
by the root mean square error (RMSE), relative standard deviation (RSD) and 
regression coefficient (R2), which are calculated with the experimental values and 
network predictions. These calculations are used as a criterion for model 
adequacy obtained as follows: 
 

 
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Where N is the number of data points, predny ,  is the network prediction, exp,ny  is the 

experimental response, my  is the average of actual values and n  is an index of 

data. 
The Figure 2 mentioned below depicts also, the recurrent network 

architecture for a COP values and procedure used for neural network learning. 
the performance of the network. Therefore, the network having minimum RMSE, 
minimum RSD and maximum R2 was selected as the best ANN model. 
According to (Hernandez et al., 2008), the proposed model is represented by the 
following equation: 
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Where s  is the number of neurons in the hidden layer, k  is the number of the 
input, and oWIW ,  and b are weights and bias, respectively. Table 4 shows the 

adjustable parameters  21,, bandbWIW o  of the proposed model. However, the 

equation (8), can be expressed as follow: 
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(9) 

 
It seems clear, according to equation (9), that it is possible to simulate the COP in 
water purification systems integrated to a heat transformer with energy recycling. 
However, in many cases, the problem is that this COP calculated by ANN is not 
ideal in the system, and therefore it is necessary that its input variables are well 
known when giving a required COP. 
 
3.2. Adaptive network based fuzzy inference system (ANFIS) 
 
An adaptive network, as its name implies, is a network structure consisting of 
nodes and directional links through which the nodes are connected. Moreover, 
parts or all of the nodes are adaptive, which means each output of these nodes 
depends on the parameters pertaining to this node and the learning rule specifies 
how these parameters should be changed to minimize a prescribe error measure 
(Jang, 1993). For simplicity, we assume the fuzzy inference system under 
consideration has two inputs x  and y  and one output z . Suppose that the rule 
base contains two fuzzy if then rules of Takagi and Sugeno’s type: 
Rule 1:      .111111 ryqxpfthenBisyandAisxIf   

Rule 2:      .222211 ryqxpfthenBisyandAisxIf   

Where iA and iB are the fuzzy sets, if  are the outputs within the fuzzy region 

specified by the fuzzy rule, ip , iq  and ir  are the design parameters that are 

determined during the training process. The ANFIS architecture to implement 
these two rules is shown in Figure 3, in which a circle indicates a fixed node, 
whereas a square indicates an adaptive node (Guler and Ubeyli, 2005).  
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Layer 1: Every node i  in this layer is a square node with a node function  
 

  2,1,1  ixO
iAi   (13) 

 

  4,3,1  iyO
iBi

  (14) 

where x  is the input to node i , and iA  is the linguistic label (small, large, etc.) 

associated with this node function, and where  x
iA ,  y

iB 2
  can adopt any 

fuzzy membership functions (MFs). Usually we choose  x
iA  to be bell-shaped 

with maximum equal to 1 and minimum equal to 0, such as  
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(15) 
 
Where ii ba , and ic  are the parameter set. Parameters in this layer are refferred to 

as premise parameters. 
Layer 2: The nodes in this layer are fixed. These are labelled M  to indicate that 
play the role of a simple multiplier. The outputs of these nodes are given by 
 

    2,12  iyxwO
ii BAii

  (16) 

 
which are the so-called firing strengths of the rules. 
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Table 3  Adjustable parameters obtained (weights and bias) in the proposed model with S=3, K=16 
IW(s,k) Wi(1,1) 

1.04 
Wi(1,2) 
1.62 

Wi(1,3) 
-8.54 

Wi(1,4) 
1.79 

Wi(1,5) 
7.15 

Wi(1,6) 
-1.19    

Wi(1,7) 
-1.09  

Wi(1,8) 
2.51 

Wi(1,9) 
-0.003 

Wi(1,10) 
-2.34 

Wi(1,11) 
242.39  

Wi(1,12) 
-159.45 

Wi(1,13) 
-172.58    

Wi(1,14) 
20.83 

Wi(1,15) 
-19.47   

Wi(1,16) 
-65.58 
 

 Wi(2,1) 
20.07 

Wi(2,2) 
-6.46  

Wi(2,3) 
-46.46      

Wi(2,4) 
6.32   

Wi(2,5) 
26.42   

Wi(2,6) 
-16.54    

Wi(2,7) 
-14.63 

Wi(2,8) 
37.45    

Wi(2,9) 
0.32    

Wi(2,10) 
4.41   

Wi(2,11) 
-216.87   

Wi(2,12) 
135.77    

Wi(2,13) 
115.08   

Wi(2,14) 
10.27    

Wi(2,15) 
17.52   

Wi(2,16) 
-47.03 
 

 Wi(3,1) 
-3.74   
 

Wi(3,2) 
-0.11       

Wi(3,3) 
3.51    

Wi(3,4) 
-0.54     

Wi(3,5) 
0.64       

Wi(3,6) 
0.34    

Wi(3,7) 
-0.02      

Wi(3,8) 
0.001 

Wi(3,9) 
0.003     

Wi(3,10) 
0.11   

Wi(3,11) 
-0.43         

Wi(3,12) 
-7.14      

Wi(3,13) 
12.61   

Wi(3,14) 
3.29     

Wi(3,15) 
-0.15     

Wi(3,16) 
-1.11 

Wo(s) Wo(1) 
-0.18 
 

Wo(2) 
0.02   

Wo(3) 
-0.88 

             

b1(s) b1(1) 
129.09 

b1(2) 
-17.75 
 

b1(3) 
-6.49 
 

             

b2 
 

0.24                

 

Where: 

)1................

..................

.........(2
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)5,1()4,1()3,1()2,1()1,1(1

bPIWPIWXoutIWXinIWXoutIWXinIW

ToutIWTinIWToutIWTinIWToutIW

ToutIWTinIWToutIWTinIWTinIWX

GEiABiGEiGEiABiABi

ABEViEViCOiCOiABGEi

COGEiGEABiGEABiABEViABGEi











 
 

(10)

)1................

..................

.........(2
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)5,2()4,2()3,2()2,2()1,2(2

bPIWPIWXoutIWXinIWXoutIWXinIW

ToutIWTinIWToutIWTinIWToutIW

ToutIWTinIWToutIWTinIWTinIWX

GEiABiGEiGEiABiABi

ABEViEViCOiCOiABGEi

COGEiGEABiGEABiABEViABGEi










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..................

.........(2
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)10,3()9,3()8,3()7,3()6,3(

)5,3()4,3()3,3()2,3()1,3(3

bPIWPIWXoutIWXinIWXoutIWXinIW
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ToutIWTinIWToutIWTinIWTinIWX

GEiABiGEiGEiABiABi

ABEViEViCOiCOiABGEi

COGEiGEABiGEABiABEViABGEi











  
(12)
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Layer 3: Every node in this layer is a circle node labelled N . The ith  node 
calculates the ratio of the ith  rule’s firing strength to the sum of all rules firing 
strengths:  
 

2,1
21

_
3 


 i

ww

w
wO i

ii  (17) 

 
For convenience, outputs of this layer will be called normalized firing strengths. 
Layer 4: In this layer, the nodes are adaptive nodes. The output of each node in 
this layer is simply the product of the normalized firing strength and a first order 
polynomial (for a first order Sugeno model). Thus, the outputs of this layer are 
given by: 
 

  2,14 


iryqxpwfwO iiiiiii  (18) 

 
Parameters in this layer will be referred to as consequent parameters. 
Layer 5: The single node in this layer is circle node labelled ∑ that computes the 
overall output as the summation of all incoming signals, i.e., 
 

 







2

1 21

2

15

i

i ii
iii ww

fw
fwO  (19) 

 
It can be seen that there are two adaptive layers in this ANFIS architecture, 
namely the first layer and the fourth layer. In the first layer, there are three 
modifiable parameters  iii cba ,, , which are related to the input MFs. These 

parameters are the so-called premise parameters. In the fourth layer, there are also 
three modifiable parameters  iii rqp ,, , pertaining to the first order polynomial. 

These parameters are so-called consequent  parameters (Despange and Massart, 
1998; Jang, 1993; Sengur, 2008a; Sengur, 2008b; Varol et al., 2007). 
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Fig. 3 ANFIS architecture 

 
3.2.1. Learning algorithm of ANFIS 
 
The aim of the training algorithm for this architecture is tune all the changeable 
parameters to make the ANFIS output match the training data. Note here that 
parameters ii ba , and ic  of the membership function (MF) are fixed, and describe 

the sigma, slope and center of the bell MFs respectively. According to (Guler and 
Ubeyli, 2005), the output of the ANFIS model can be written as: 
 

2
21

2
1

21

1 f
ww

w
f

ww

w
f





  (20) 

 
Substituting Equation (19) into Equation (20) yields: 
 

2211

_

fwfwf


  (21) 
 
Substituting the fuzzy if-then rules into Equation (21), it becomes: 
 

   22221111 ryqxpwryqxpwf 


 (22) 
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After rearrangement, the output can be written as: 
 

222222111211 )()()()()()( rwqywpxwrwqywpxwf   (23) 
 
which is a linear combination of the changeable consequent parameters 1p , 2q , 

1r , 2p , 2q  and 2r . The least squares method can be used to identify the optimal 
values of these parameters easily. When the premise parameters are not fixed, the 
search space becomes larger and the convergence of the training becomes slower. 
A hybrid algorithm combining the least squares method and the gradient descent 
method is adopted to solve this problem. The hybrid algorithm is composed of a 
forward pass and a backward pass. The least squares method (forward pass) is 
used to optimize the consequent parameters with the premise parameters fixed. 
When the optimal consequent parameters are found, the backward pass starts 
immediately. The gradient descent method (backward pass) is used to adjust 
optimally the premise parameters corresponding to the fuzzy sets in the input 
domain. The output of the ANFIS is calculated by employing the consequent 
parameters found in the forward pass. The output error is used to adapt the 
premise parameters by means of a standard back-propagation algorithm. It has 
been proven that this hybrid algorithm is highly efficient in training the ANFIS 
(Despange and Massart, 1998; Esen and Inalli, 2010;  Jang, 1993; Sengur, 2008a; 
Sengur, 2008b; Varol et al., 2007). 
 
3.3 ANN and ANFIS models for case study 
 
ANN model, Multi-layered Perceptron/Back-propagation (MLP/ BP) with the 
Levenberg-Marquardt learning algorithm was developped over this manuscript. 
On the other hand, the ANFIS model was also developed using the same input 
variables. 

The data set was divided into three separate data sets randomly the training 
data set and the testing data set. The training data set was used to train the ANN 
model and ANFIS model. However, the testing data set was used to verify the 
accuracy and the effectiveness of the trained ANN and ANFIS model for a water 
purification process integrated to an absorption heat transformer system with 
energy recycling. 

In this study, in input layer, there are 10 levels of temperatures, 4 of 
concentrations and 2 of pressures. The coefficient of performance of the system 
(COP) is in output layer. The COP of system is the output variable of the ANN 
and ANFIS models. 

14

Chemical Product and Process Modeling, Vol. 7 [2012], Iss. 1, Art. 7

Brought to you by | Biblioteca Nacional (Biblioteca Nacional)
Authenticated | 172.16.1.226

Download Date | 5/25/12 5:05 PM



The inputs of the model were normalized in the (0.1, 0.9) range . So, all 
the input data set iX ( from the training, validation and test sets) were scaled to a 

new value ix  as follows: 

 

1.08.0
minmax

min 











XX

XX
x i

i

 
(24) 

 
However, The output values were not normalized. The block diagram of 

the proposed ANN and ANFIS models are given in Figurte 4. As can be seen 
from the block diagram, ANN and ANFIS models are adjusted, or trained, so that 
a particular input leads to a specific target output. Typically, many such 
input/target output pairs are used to train the models. 

 

Fig. 4 ANN and ANFIS architecture used for the system 

Model validation is the process by which the input vectors from 
input/output data sets on which the ANN and ANFIS was not trained, are 
presented to the trained model, to see how well the trained model predicts the 
corresponding data set output values.  

Therefore, several statistical methods, such as the mean squared error 
(RMSE), relative standard deviation (RSD) and the regression coefficient (R2), 
could be used to compare predicted and experimental values for model validation. 
Therefore, these statistical parameters could be estimated according to equations. 
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The training of the ANN models was stopped when either the acceptable 
level of error was achieved. Neverthless, in order to obtain the optimal model 
parameters, the fuzzy rule architecture of the ANFIS was designed by using 
different type of MFs and various number of MFs. Hybrid learning rule was used 
to train the model according to input/output data pairs, and the number of 
iterations was 10000 although it was observed that the best about the learning was 
completed in the first 4000 epochs.  
Different types of MFs as trapezoidal membership function (trapmf), generalized 
bell membership function (gbellmf), triangular membership function (trimf), 
gaussian membership function (gaussmf) and gaussian combination membership 
function (gauss2mf) were used in the ANFIS model.  
ANN and ANFIS were implemented by using MATLAB software package. 
 
4. Results and discussions 
 
4.1 Proposed neural network model 
 
A neural network model as showed in Figure 5 with three neurons in the hidden 
layer (51 weights and four biases) was found to be efficient in predicting COP 
values for the water purification process integrated to an absorption heat 
transformer with energy recycling. 

Similar results were obtained by (Hernandez et al., 2008), which 
considered the proposed method for normalizing the inputs and targets reported 
by (Demuth and Beale, 1998). 

Figure 6 shows the experimental data versus simulated data of COP values 
with energy recycling. We can also observe how the simulated data have the 
expected relationship with regard to experimental data. The neural network was 
well fit to the behavior of the learning database: 7105219.9 RMSE , 

4109343.2 RSD and 9980.02 R . The neural network model also fits all these 
unknown data very well. This figure demonstrates the ability of the model to 
predict the COP values at different temperatures (in AB, GE, CO and EV), 
pressure and initial concentration for a given validity range. This confirms the 
importance of the artificial neural network in simulating the performance of water 
purification process integrated to an absorber heat transformer with energy 
recycling. 
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Fig. 5  Model for prediction of COP values 

 

 

Fig. 6 Correlation of experimental and predicted (ANN) COP values 
 

We stress that, of course, the proposed model was elaborated by the 
adjustable parameters of the network, called weights and biases (IW, Wo, b1 and 
b2) as mentioned above in Table 3, these coefficients play a special role because 
are used in the ANN model to simulate COP values. Hence, the model calculated 
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was then validated using testing database (fresh data). However, these COP 
values are very complex and so difficult to predict just based on a model 
including assumptions. It shows that the COP prediction was correct. On the other 
hand, the statistical test of slope = 1 and intercept = 0, was also carried out to 
confirm statistically the validity of the model (Verma et al., 2005). 

 
4.2 Development of the ANFIS 
 
In this study ANFIS method has been used to predict the COP values for the 
water purification process integrated to an absorption heat transformer with 
energy recycling. Therefore, finding the membership function (MF) as showed in 
Figure 7 which the best one matches the ANFIS model to the condenser of the 
purification system is the first objective of the computer simulations. The second 
objective is finding the best appropriate number of MFs that yields the best 
performance. Statistical values such as RMSE, RSD and R2 and are given in Table 
4 for the heat transformer system with energy recycling for various MF types. The 
number of the MF is fixed to three for these simulations. 

From the results presented in Table 4 for COP, ‘Triangular’ appeard to be the best 
optimal MF for the ANFIS model. The RMSE value and RSD value are 

6105419.9   and 0029.0 , respectively. However R2 is 9897.0 . Optimum trained 
ANFIS structures were selected according to the minimum RMSE and RSD, 
respectively and maximum R2 values of the test set. 
Used ANFIS data’s in Matlab program are given as follows: 
 

 Number of nodes: 524 
 Number of linear parameters: 243 
 Number of no linear parameters: 30 
 Total number of parameters: 273 
 Number of training data pairs: 6826 
 Number of fuzzy rules: 243. 

 
ANFIS with triangular membership function fuzzified into three fuzzy sets as: 
low, medium and high, was found to be efficient in predicting the coefficient of 
performance for a water purification process integrated to a heat transformer with 
energy recycling. Figure 8, presents a comparaison between, the experimental and 
simulated of the COP values using all data available. 
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Fig. 7  Membership functions 
 

Table 4 MF and number of MF values of COP in the proposed ANFIS model 

MFa - MFNb RMSE %RSD R2

Triangular-3 6105419.9   0029.0  9897.0  

Gbell-3 5103257.8   0257.0  9656.0  

Gauss2mf-3 4107318.6   2075.0  9584.0  

Gauss-3 3103292.6   9504.1  9498.0  

Trap-3 3106487.6   0489.2  9399.0  

a
Membership function 

b
Membership function number 
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Fig. 8 Correlation of experimental and predicted (ANFIS) COP values 

 
Experimental (COPExp) and simulated (COPANFIS) data were compared 

satisfactorily through a linear regression model  ExpANFIS COPbaCOP   

obtaining a regression coeficient 9897.02 R . According to (El Hamzaoui et al., 
2011), to satisfy the statistical of intercept and slope, upper and lower value of the 
intercepts must contain zero and upper and lower value of the slope have to 
include one. 

Table 5 shows the limits for test indicators, with slope containing the one 
and with the intercept containing zero. Consequently, the proposed model passed 
the test with 99% confidence level. This test with information mentioned above 
guarantees that the ANFIS has a satisfactory level of confidence. 

 

Table 5 Intercept and slope statistical test 

COP 
(Coeficient of performance) 

alower aupper

-0.0078 0.0100 
blower bupper

0.9721 1.0021 
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4.3 Comparative results 
 
The remarkable thing is that, according to the Figure 9 , there is good agreement 
between the predicted values by ANN and ANFS models with experimental data. 
Indeed, it has been an outstandingly successful models in predecting the 
experimental results.  
 

 
 
Fig. 9 COP versus number of test patterns for a water purification process in 

a heat transformer 
 

These models: artificial neural network (ANN) and adaptive neuro fuzzy 
inference system (ANFIS), prove to be very effective in modeling the coefficient 
of performance of a water purification process integrated to a heat transformer 
with energy recycling. The smaller RMSE and RSD and larger R2 mean better 
performance. However, the performance of the ANN and ANFIS on modeling 
COP’s of the system in a heat transformer are presented in Table 6, where the two 
models are trained using the same training datasets and validated by the same 
testing datasets (fresh data). In practice, however, the calculation required for 
system are so complicated, that’s why, all the calculations were carried out on 
LINUX system, Intel® D CPU 2.80 Ghz, 2.99 GB of RAM. According to the 
Table 6, we can distinguish the following results: The ANN model has smaller 
RMSE and RSD as well as bigger R2 for the both the training and testing datasets 
than the ANFIS model. 

In this way, the ANN achieves better performances than the ANFIS 
model. Therefore, ANN is a good choice for modeling the coefficient of 
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performance of water purification process integrated to a heat transformer with 
energy recycling. 

It is believed, also, that ANN and ANFIS could be used to handle many 
other types of problems about water purification process. 

 
Table 6 Performances of ANN and ANFIS in modeling COP’s of the system 

Model Training and testing database 
RMSE RSD(%) R2

ANN 
ANFIS 

7105219.9   
6105419.9   

4109343.2   
0029.0  

9980.0  
9897.0  

 
5. Conclusions 
 
Due to the complexity of relationships between input and output variables for 
COP prediction of a water purification process integrated to a heat transformer 
with energy recycling, and in order to deal with this problem, this study suggests 
that how we may use ANN and ANFIS network for modeling COP’s of the 
system. We also show a comparative study between ANN and ANFIS models. 
However, the results analysis and figures demonstrate clearly that the ANN model 
is better than the ANFIS model, according to the statistical evaluation criterion 
(RMSE, RSD and R2 values ). 

Despite the important role played by ANN and ANFIS for modeling 
COP’s behavior of a water purification process integrated to a heat transformer 
with energy recycling, they have demonstrated some incovenients in application. 
For example, the disadvantages of ANN include: 

 
- It’s “black box” nature. 
- Greater computational burden. 
- Proneness to overfitting and empirical nature of model 

development. 
 

While, the disadvantages of ANFIS, we could mention: 
 

- It is not intuitive. 
- It has not widespread acceptance. 
- It is not suited to human input. 

 
Finally, ANN and ANFIS paradigms are demonstrated to be very powerful 

tools, when applied in an appropriate manner for modeling the more complicated 
engineering processes in which there is no obvious mathematical relationship to 
express their behavior.  
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Nomenclature 
 
b1, b2     bias 
COP       coefficient of performance, dimensionless 
In            input 
K             number of neurons in the input layer 
LiBr        lithium bromide solution 
Out         output 
P             pressure, in Pascal (Pa) 
Q            heat flow, in Watt 
RMSE    root mean square error 
S             number of neurons in the hidden layer 
X            concentration, % w/w 
IW, Wo   matrix weight 
 
Input variables for artificial neural network and adaptive neuro fuzzy 
inference system: 
 
Tin.GE-AB        input-temperature in the absorber that comes from generator, °C 
Tin.EV-AB        input-temperature in the absorber that comes from evaporator, °C 
Tout.AB-GE      output-temperature in the absorber towards generator, °C 
Tin.AB-GE        input-temperature in the generator that comes from absorber, °C  
Tout.GE-CO       output-temperature in the generator towards condenser, °C  
Tout.GE-AB       output-temperature in the generator towards absorber, °C 
Tin.CO             input-temperature of the condenser that comes from generator, °C 
Tout.CO            output-temperature in the condenser towards evaporator, °C 
Tin.EV             input-temperature in the evaporator that comes from condenser, °C 
Tout.EV-AB       output-temperature in the evaporator towards absorber, °C 
PAB                 pressure in absorber, in Pascal (Pa) 
PEV              pressure in evaporator, in Pascal (Pa) 

PGE                   pressure in generator, in Pascal (Pa) 
PCO                   pressure in condenser, in Pascal (Pa) 
Xin.AB         LiBr (Lithium bromide) input-concentration in the absorber, % w/w 
Xout.AB         LiBr (Lithium bromide) output-concentration in the absorber, % w/w 
Xin.GE         LiBr (Lithium bromide) input-concentration in the generator, % w/w 
Xout.GE         LiBr (Lithium bromide) output-concentration in the generator, % w/w 
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Sub-Index 
 
AB  absorber 
ANN  artificial neural network 
ANFIS  adaptive neuro fuzzy inference system 
CO  condenser 
EV  evaporator 
EXP  experimental 
FL  fuzzy logic 
GE  generator 
MFs  membership functions 
SIM  simulated 
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