
TB, RJ, UK, JPhysB/315850, 27/06/2009

IOP PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 000000 (5pp) UNCORRECTED PROOF

An investigation of the size-dependent
cohesive energy and the structural
stability of spherical metallic
nanoparticles
T Barakat, O M Al-Dossary and E H Abdul-Hafidh

Physics Department, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia

E-mail: tbarakat@ksu.edu.sa

Received 16 April 2009, in final form 17 June 2009
Published DD MMM 2009
Online at stacks.iop.org/JPhysB/42/000000

Abstract
The size-dependent potential parameters method is used to investigate the effect of many-body
interactions on the structural stabilities and the cohesive energy of molybdenum (Mo) and
tungsten (W) spherical metallic nanoparticles. The total interaction energy is represented in
terms of a two-body Mie-type potential plus a three-body Axilord–Teller-type potential.
Results emphasized the importance of multi-body forces to explain nano-structures. The
predicted cohesive energy for these nanoparticles is observed to decrease with decreasing
sizes, a result which is in agreement with experimental results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the last few years an increased interest in nano-systems
has revealed a new realm of physical phenomena. This
special interest in nano-systems comes from the fact that at the
nanometre level the physical properties of these objects not
only depend on their structure, but also their size. Since this
was realized, the size-dependent cohesive energy phenomenon
has been a topic of interest [1–3].

Currently, the cohesive energy is considered as one of the
most fundamental thermal properties that describes the inner
structural energy of nanoparticles and shows how strongly
atoms hold together. It is regarded as being directly related to
the nature of the thermal stability of the nanoparticle. It also
plays an important role in the melting phenomenon [4–6].

Among the various nanoparticles, the molybdenum (Mo)
and tungsten (W) provoke special interest. The experimental
measurements in 2002 [7] for the cohesive energy of the Mo
and the W nanoparticles as a function of their sizes, have
placed the study of the size-dependent cohesive energy of
nanoparticles on a new footing. It was observed that the
cohesive energy of nanoparticles decreases with decreasing
size.

So far, a lot of efforts have been made to explain the
cohesive energy depression of these nanoparticles within
experimental limits. Researchers have developed different
models, such as the bond order-length-strength (BOLS) model
[8], latent heat model [9], liquid drop model [10], bond energy
model [11], the Lennard–Jones potential model [12], etc. All
these models can explain the depression of the cohesive energy
of nanoparticles with their decreasing size, but the quantitative
fitting to the experimental values is different.

Recently we have proposed a size-dependent potential
parameters (SDPP) model and applied it to investigate the two-
body interaction (Mie-type) potential range on the cohesive
energy of metallic nanoparticles [13]. Encouraged by its
satisfactory performance through comparisons with other
models, we feel tempted to extend the SDPP model to
investigate the cohesive energy of metallic nanoparticles by
using this time an empirical many-body potential energy
function (PEF).

This model is very easy to implement and the results are
sufficiently accurate for practical purposes. Moreover, the
SDPP model can provide detailed insights into the physics
of these particles when seeking to clarify the dependence of
their thermodynamic behaviours on their sizes. The benefits
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of the SDPP approach become increasingly apparent as the
characteristic size of the system decreases.

With this in mind, this paper is organized as follows. In
section 2, the model and method for calculating the cohesive
energy of spherical metallic nanoparticles are discussed. In
section 3, the numerical results of this work compared with
the experimental ones are presented, and therein, we remark
on the results and our findings.

2. Model and method of calculations

To construct the SDPP model, we assume that a spherical
metallic nanoparticle in the nanometre size is generated from
ideal BCC or FCC crystalline structures, and its internal
structure is the same as the bulk crystal. An atom is taken
as a central one and the first nearest-neighbour distance is
considered as the radius of the first shell and the second nearest-
neighbour distance as the radius of the second shell, and so
on. The number of shells in the nanoparticle, the radius of
the nanoparticle, the number of atoms in each shell and the
total number of atoms (n) in the nanoparticle can all be easily
obtained. We assume that in the absence of external forces
a function En(

−→r1 , . . . ,−→rN ) for a system of n atoms exists to
describe their potential energy as a function of their positions
which may be expanded as [14]
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where, u2(
−→ri ,−→rj ) and u3(

−→ri ,−→rj ,−→rk ) denote two-body and
three-body interactions, respectively. This is the so-called
many-body expansion of En, and it is usually believed that
the series has a quick convergence, and therefore, the higher
moments may be neglected. In this work, the two-body
interactions are assumed to be given by a Mie-type potential
[15]:
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where rij denotes the distance between atoms i and j, r0

denotes the equilibrium separation between the centres of any
two atoms, and ε is the two-body energy at rij = r0. The
three-body term is represented by an Axilord–Teller-type triple
dipole function [16]

u3(
−→ri ,−→rj ,−→rk ) = z(1 + 3 cos θi cos θj cos θk)

(rij rikrjk)3
, (3)

where θi, θj , θk and rij , rik, rjk represent the angles and the
sides of the triangle formed by the three particles i, j and k,
respectively. The parameter z is the intensity of the three-body
interactions.

In this model, the total energy of a nanoparticle can
be determined by summing the energy of all the atoms.

Figure 1. Relative minimum energy difference as a function of z∗

between FCC and BCC structures; z∗ � 0.70 BCC is more stable.

Therefore, combining equations (1)–(3), we can write the
effective cohesive energy per atom E∗

a of a spherical metallic
nanoparticle with a cubic internal structure as

E∗
a = 1

2A8r
∗8 − A4r

∗4 + z∗Thr
∗9

, (4)

where E∗
a = En/(nε), z∗ = z

/(
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0

)
, r∗ = r0/d, and d

represents the nearest-neighbour distance in the crystal. The
coefficients A8, A4 and Th are lattice sums and they are
given by
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It is obvious that the potential parameters A8, A4 and Th are
related to the particle size, and related to the structure of the
nanoparticle through d, and highly dependent on the potential
powers. That is to say, changing the potential powers means
changing the range of the potential.

The stability condition for the minimum energy
configuration of a nanoparticle at T = 0◦ K can be obtained
by considering ∂En/∂V = 0 or ∂E∗

a/∂d = 0. This is because
the atomic volume V is related to d by V = N0gd3, where N0

denotes Avagadro’s number, and g is a geometrical constant.
Thus the stability condition becomes

A8r
∗8 − A4r

∗4 + 9
4z∗Thr

∗9 = 0. (7)

Evidently, equation (4) is similar to the expression of
the cohesive energy for bulk materials. On the other hand, the
effect of the three-body interaction term on the cohesive energy
for bulk materials is accomplished by varying z∗ between
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Figure 2. Size-dependent potential parameters A8 of a body-centred
cubic structure as a function of nanoparticle size n.

Figure 3. Size-dependent potential parameters A4 of a body-
centered cubic structure as a function of a nanoparticle of size n.

0.0 and 2.0 in increments of 0.2. Therefore, first r∗ values
for BCC and FCC bulk structures were calculated from the
stability condition as a function of z∗. The potential parameters
A8, A4 and Th for bulk structures are used at this stage
[13, 17]. The positive real root of equation (7) is assumed as an
acceptable solution. The minimum cohesive energies per atom
E∗

a for BCC and FCC crystalline structures were calculated as
a function of z∗. Furthermore, in figure 1 the relative energy
differences, �(FCC−BCC) = (E∗

a (FCC)
− E∗

a (BCC)
)/E∗

a (FCC)
is

plotted as a function of z∗ to demonstrate the corresponding
stability regions. Apparently, for this particular case, the FCC
structure is energetically more favourable for 0.3 � z∗ � 0.7,
and for 0.7 � z∗ the BCC structure was found to be more
stable. However, from figure 1 it is clear that the variation
of the minimum energy induced by the crystalline structure
difference between BCC and FCC is fairly small and may lead
to phase transition at small sizes. Therefore, we calculate

Figure 4. Size-dependent potential parameters Th of body-centred
cubic structure as a function of a nanoparticle of size n.

Figure 5. Size-dependent potential parameters A8 of face-centred
cubic structure as a function of a nanoparticle of size n.

the minimum energy for both BCC and FCC structures at
z∗ = 0.70 and z∗ = 1.20.

On the other hand, in the nano-range, the potential
parameters A8, A4 and Th in equations (5) and (6) depend
on the particle size n, and the investigation was carried out
again for BCC and FCC structures with Rcut varying shell by
shell around one central atom. For each value of Rcut a new
nanoparticle size was generated. The variations of A8, A4

and Th with the particle size are reproduced and are shown
in figures 2–7, where the solid-symbol lines are the results
calculated by equations (5) and (6). From these figures it
is clear that A8, A4 and Th increase with increasing size of
the particle, and converges rapidly to the corresponding bulk
values.

For every generated spherical metallic nanoparticle of
structure BCC or FCC, r∗ was calculated from the stability
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Figure 6. Size-dependent potential parameters A4 of face-centred
cubic structure as a function of a nanoparticle of size n.

Figure 7. Size-dependent potential parameters Th of a face-centred
cubic structure as a function of a nanoparticle of size n.

condition at z∗ = 0.70 and z∗ = 1.20. The positive real root
of equation (7) is assumed as an acceptable solution. The
minimum cohesive energy per atom E∗

a for BCC and FCC
spherical metallic nanoparticles was calculated as a function
of n.

Typically, to make the minimum cohesive energy free
from the parameter ε, we calculate the relative minimum
cohesive energy of a nanoparticle with respect to the cohesive
energy of the corresponding bulk material, i.e. E∗

a/E
∗
0 , where

we denote the cohesive energy of the bulk material by E∗
0 . The

results of the SDPP model for the relative cohesive energy
of our spherical metallic nanoparticles with different sizes
and different structures are shown in figures 8 and 9. In
these figures the solid-symbol lines are the results calculated

Figure 8. The particle size dependence of the relative cohesive
energy of BCC spherical nanoparticles. The star symbols denote the
experimental values [7].

Figure 9. The particle size dependence of the relative cohesive
energy of FCC spherical nanoparticles. The star symbols denote the
experimental values [7].

by equation (7), and those with the star symbols denote the
experimental values of Mo and W nanoparticles [7].

3. Numerical results and discussion

As was mentioned before, the only available experimental
values are the cohesive energies of Mo and W nanoparticles,
appeared in the literature [7, 18]. It is reported that the
cohesive energy of the Mo nanoparticle of size n = 2000 is
−4.25 eV/atom, whereas the cohesive energy of the bulk Mo
is −6.2 eV/atom. On the other hand, for the W nanoparticle
of size n = 7000, its cohesive energy is −6.42 eV/atom, and
that of the corresponding bulk W is −8.55 eV/atom.

From figures 8 and 9 it can be seen that the relative
cohesive energy of the nanoparticles depends on the particle
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size, i.e. the relative cohesive energy of a nanoparticle
increases when the particle size is increased, and approaches
that of the corresponding bulk metal when n is very
large. It is also shown that the relative cohesive energy
of the nanoparticles depends on the intensity of the three-
body interaction z∗, as a result of its dependence on the
stability of the crystal, where it is observed that the relative
cohesive energy of the present work for both the Mo and W
nanoparticles are reproduced at the values z∗ = 0.70 and
z∗ = 1.20. This result supported the phase transition idea
[19, 20], that is metals with BCC structure would have a FCC
structure when the crystal size is small enough.

In conclusion, this work demonstrates the dependence of
the cohesive energy of metallic nanoparticles on the range
of the potential used to model atom–atom interactions, and
also its dependence on the sizes and the structure of the
metallic nanoparticles. The present results are consistent
with the corresponding experimental values for the cohesive
energy of Mo and W nanoparticles, and suggests that the two-
body Mie-type potential plus a three-body Axilord–Teller-type
potential can be a possible candidate to study the properties
of various metallic nanoparticles by considering the size-
dependent potential parameters model.

Acknowledgments

The authors gratefully acknowledge the support provided to
this research by King Abdullah Institute for Nanotechnology
under Grant No. Nano 9/1429.

References

[1] Alymov M I and Shorshorov M K 1999 Nanostruc. Mater.
12 365

[2] Qi W H, Wang M P and Su Y C 2002 J. Mater. Sci. Lett. 21 877
[3] Qi W H and Wang M P 2002 J. Mater. Sci. Lett. 21 1743
[4] Qi W H, Wang M P, Zhou M and Hu W Y 2005 J. Phys. D:

Appl. Phys. 38 1429
[5] Kittel C 1996 Introduction to Solid State Physics 7th edn (New

York: Wiley)
[6] Qi W H and Wang M P 2004 Mater. Chem. Phys. 88 280
[7] Kim H K, Huh S H, Park J W, Jeong J W and Lee G H 2002

Chem. Phys. Lett. 354 165
[8] Sun C Q, Wang Y, Tay B K, Li S, Huang H and Zhang Y J

2002 J. Phys. Chem. B 106 10701
[9] Jiang Q, Li J C and Chi B Q 2002 Chem. Phys. Lett. 366 551

[10] Nanda K K, Sahu S N and Behera S N 2002 Phys. Rev. A
66 013208

[11] Qi W H, Wang M P and Xu G Y 2003 Chem. Phys. Lett.
372 632

[12] Qi W H, Wang M P, Zhou M and Hu W Y 2004 Mater. Lett.
58 1745

[13] Barakat T, Al-Dossary O M and Alharbi A A 2007 Int. J.
Nanosci. 6 461

[14] Haliciog̃lu T 1980 Phys. Stat. Sol. (b) 99 347
[15] Mie G 1903 Ann. Phys. Leipzig 11 657
[16] Axilord B M and Teller E 1943 J. Chem. Phys. 11 299
[17] Takai T, Haliciog̃lu T and Tiller W A 1985 Phys. Stat. Sol. (b)

130 131
[18] Edgar E L 1993 Periodic Table of the Elements (Gaston,

Oregon)
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