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Calculation of the cohesive energy of metallic nanoparticles

by the Lennard–Jones potential
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Abstract

The cohesive energy of metallic nanoparticles has been studied by Lennard–Jones potential. It is found that the Lennard–Jones potential

can be used to calculate the cohesive energy of metallic nanoparticles by considering the size-dependent potential parameters. It is predicted

that the cohesive energy of small particles decreases with decreasing the particle size, which is consistent with the experimental values of Mo

and W nanoparticles.
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It is shown that the thermodynamic properties of nano-

particle depend on the particle size [1–8]. However, in all

the properties, only the melting point has been measured

experimentally [2,3]. Up to last year, the first experimental

data on cohesive energy of Mo and W nanoparticles have

been determined through measuring the oxidation enthalpy

of the nanoparticles [8].

In our previous work [7], a very simple model has

been developed accounting for the size-dependent cohe-

sive energy of nanoparticles. In that model, we assume

that the cohesive energy equals to the energy to destroy

the metallic bonds, where the concept of the metallic

bond is adopted from the concept of ionic bond by

considering the nearest coordination number. By taking

the coordination number difference between the surface

atoms and the inside atoms into consideration, we

obtained a simple relation for the cohesive energy of

nanoparticle, and which give the predictions on cohesive

energy of Mo and W nanoparticles agreeing with the

corresponding experimental results. However, in that

simple model, the structural difference (e.g. the difference
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between the simple cubic and the face-centered cubic) is

not considered.

To overcome the deficiency, we can refer to the interac-

tion potential functions. If the energy of each atom in a

nanoparticle is known, the total energy of the nanoparticle

can be obtained by summing all the energy of each atom.

Minimizing the total energy with respect to the distance

between atoms, we can get the equilibrium configuration of

the nanoparticle, and then we can calculate the cohesive

energy of nanoparticles. This procedure is just the method of

this work. In the present calculation, we assume that the

atoms interact via Lennard–Jones potential

uðrijÞ ¼ 4e
r
rij

� �12

� r
rij

� �6
" #
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where rij is the distance between the atom i and the atom j,

and e and r are the parameters . Empirical potential of this

type, originally developed for description of inert gases, and

now is commonly used to study the properties of condensed

systems [9].

It is needed to construct a nanoparticle model to start our

work. In the present work, we assume that the nanoparticle

can be formed in this way: first, a particle in nanometer size

is taken out from the bulk crystal, where its structure is the



Fig. 1. Potential parameter A12 of simple cubic structure as a function of

particle size n. Fig. 3. Potential parameter A12 of body-centered cubic structure as a

function of particle size n.
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same as the bulk crystal; second, the atoms of the particle

interact with each other; third, in equilibrium, the nano-

particle is formed. For convenience, we assume the nano-

particle is in cubic form, and its structure may be simple

cubic structure (SC), face-centered cubic (FCC) or body-

centered cubic (BCC). The close-packed hexagonal (cph)

structure has the same density and coordination number as

the FCC structure, so they are identical in our present

calculation.

The potential energy (E) of the cubic nanoparticle with n

atoms can be written as

E ¼ 1

2

Xn
i¼1

Xn
j¼1
j p i

uðrijÞ ð2Þ

Inserting Eq. (1) into Eq. (2), we have

E ¼ 2e � n � A12
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Fig. 2. Potential parameter A6 of simple cubic structure as a function of

particle size n.
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where we have taken rij = aijR, and R is the nearest

distance between two atoms. It is obvious that A12 and

A6 are related to the particle size n. If the number of atom

n is fixed, A12 and A6 are constants. In equilibrium, the

total potential energy is minimum, i.e., dE/dR = 0, which

gives

R0 ¼
2A12

A6

� �1
6

�r ð5Þ

where R0 is the nearest distance between two atoms in

equilibrium. Inserting Eq. (5) into Eq. (3), we can get
Fig. 4. Potential parameter A6 of body-centered cubic structure as a function

of particle size n.



Fig. 5. Potential parameter A12 of face-centered cubic structure as a function

of particle size n.

Fig. 7. The particle size dependence of the cohesive energy of simple cubic

nanoparticles.
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the total energy En in equilibrium configuration, which

is

En ¼ � A2
6

2A12

� n � e ð6Þ

Apparently, En is the cohesive energy of n atoms, and the

cohesive energy per atom Ea is

Ea ¼ � A2
6

2A12

� e ð7Þ

Eq. (7) is similar to the expression of the cohesive energy

of bulk materials. However, in Eq. (7), the parameters A12

and A6 depend on the particle size, where these parameters

of bulk materials are independent of the size of bulk

materials [10]. For cubic structures, the variations of A12

and A6 with the increasing the particle size are shown in

Figs. 1–6, where the solid-symbol lines are the results

calculated by Eq. (4), and the dash lines denote the

corresponding values of bulk materials [10]. It is shown
Fig. 6. Potential parameter A6 of face-centered cubic structure as a function

of particle size n.
that both A12 and A6 increase with increasing the particle

size, and approach to the corresponding bulk values when

the particle size becomes larger.

In Eq. (7), the size-dependent factor is A6
2/2A12, and the

parameter å can be determined by fitting the cohesive

energy of bulk crystals. For simplicity, we can calculate

the relative cohesive energy of nanoparticles to make the

cohesive energy free of the parameter e. If E0 denotes the

cohesive energy of bulk metals, we have

Ea

E0

¼ P0 �
A2
6

2A12

ð8Þ

where P0 = 2A12V /A6V
2, A12V and A6Vare the corresponding param-

eters of bulk metals. For three different structures SC, BCC

and FCC of nanoparticles, the values of P0 are 0.176, 0.121

and 0.116, respectively [10].

The calculated results on the cohesive energy of metallic

nanoparticles with different structures are shown in Figs. 7–

9, where the solid lines are the present calculation results
Fig. 8. The particle size dependence of the cohesive energy of body

centered cubic nanoparticles.



Fig. 9. The particle size dependence of the cohesive energy of face-centered

cubic nanoparticles, where the square symbols denote the experimental

values [8].
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calculated by Eq. (8). Since the cohesive energy of nano-

particles is difficult to be measured, the experimental values

on the cohesive energy of Mo and W nanoparticles appeared

in literature up to last year [8], where the values are obtained

by measuring the oxidation enthalpy of the nanoparticles. It

is reported that the cohesive energy of Mo nanoparticles in

the size n = 2000 is � 410 kJ/mol [8], where the cohesive

energy of bulk Mo is � 598 kJ/mol [11]. For the W

nanoparticles in the size n = 7000, their cohesive energy is

� 619 kJ/mol [8] and that of the corresponding bulk W is

� 824 kJ/mol [11]. As a comparison with our present

theoretical prediction, the normalized experimental values

on the cohesive energy of Mo and W nanoparticles in FCC

structure are also shown in Fig. 9.

It is shown that the cohesive energy of the nanoparticles

depends on the particle size, i.e. the relative cohesive energy

of nanoparticles increases with increasing the particle size,

and approaches to that of the corresponding bulk metal. The

present calculation values on cohesive energy of Mo and W

nanoparticles are higher than the corresponding experimen-

tal ones. However, considering the assumptions in our

model that all the atoms of the nanoparticle have the same

variation in equilibrium and the nanoparticle is in cubic

form, the present results are acceptable.

As mentioned in the beginning of this letter, the structural

difference is considered presently. The calculated relative

cohesive energies of the simple cubic nanoparticles in the

size n = 2000 and n = 7000 are 0.85 and 0.88, respectively,

while those of the body-centered nanoparticles in the same

size are 0.84 and 0.87, and these of the face-centered

nanoparticles in the same size are 0.83 and 0.86. Apparently,

if we ignore the structure difference between SC, FCC and

BCC structures, more errors may occur in the final results.

Furthermore, it is shown that the size effect on the cohesive

energy is more obvious in face-centered cubic nanoparticles

than that of in the body-centered cubic and the simple cubic

nanoparticles. For Mo and W nanoparticles, their cohesive
energies calculated by FCC structure are more close to the

experimental values than that by SC structure, which also

suggests that the present method is efficient in predicting the

cohesive energy of nanoparticles by considering the struc-

ture difference.

It is known that the melting point of nanoparticle is size

dependent [2,3], and melting point is a parameter to estimate

strength of the metallic bonds. With the decrease in the

particle size, its melting point decreases too, which means

that the strength of metallic bond of nanoparticles is weaker

than that of bulk metals. The cohesive energy can also be a

parameter to characterize the strength of metallic bonds, and

the absolute value of cohesive energy of metallic nano-

particle decreases with decreasing of particle size, which

also suggests that the metallic bond of nanoparticles is

weaker than that of the corresponding bulk metals. Appar-

ently, our theoretical results of metallic bond variation of

metallic nanoparticles are consistent with the predictions of

that of their melting point variation.

Generally, the differences between the cohesive energies

of bulk metals at 0 K and at their melting temperatures are

less than 5% [10], while the measuring temperature of the

cohesive energy is higher than 0 K but lower than their

melting temperature. However, the measuring errors in the

values of the cohesive energy of metals are comparable with

the temperature effect on the cohesive energy. Therefore, the

temperature effect on the cohesive energy of bulk metals can

be neglected in citing the experimental values of cohesive

energy. According to Eq. (8), the parameters P0, A6 and A12

are only related to the type of structures and independent of

the temperature variation, then the cohesive energy of

nanoparticles should follow the same temperature-depen-

dent relation as the bulk metals. In other words, the

temperature effect on the cohesive energy of metallic nano-

particles can also be neglected, which has been done in

present consideration.

In conclusion, the Lennard–Jones potential is used in

this letter to account for the size dependence of the cohesive

energy of metallic nanoparticles with different structures by

considering the size-dependent potential parameters. It is

predicted that the cohesive energy of nanoparticles

decreases with the decrease in particle size. The present

calculation results on the cohesive energy of Mo and W

nanoparticle are reasonably consistent with the corres-

ponding experimental values, which suggests that the sim-

ple Lennard–Jones potential can be used to study the

properties of nanoparticle by considering the size-dependent

potential parameters.
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