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Computer simulation of local order in condensed phases of silicon
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A model potential-energy function comprising both two- and three-atom contributions is proposed
to describe interactions in solid and liquid forms of Si. Implications of this potential are then ex-

plored by molecular-dynamics computer simulation, using 216 atoms with periodic boundary condi-
tions. Starting with the diamond-structure crystal at low temperature, heating causes spontaneous
nucleation and melting. The resulting liquid structurally resembles the real Si melt. By carrying out
steepest-descent mappings of system configurations onto potential-energy minima, two main con-
clusions emerge: (1) a temperature-independent inherent structure underlies the liquid phase, just as
for "simple" liquids with only pair interactions; (2) the Lindemann melting criterion for the crystal
apparently can be supplemented by a freezing criterion for the liquid, where both involve critical
values of appropriately defined mean displacements from potential minima.

I. INTRODUCTION

In contrast to most other elements, the tetrahedral
semiconductors Si and Ge shrink when they melt. ' The
crystalline forms of these substances have the open dia-
mond structure with each atom bonded to four others in a
tetrahedral pattern. Diffraction experiments show that
melting causes a partial collapse of this structure whereby
coordination number 4 in the crystal increases substantial-
ly to an average value exceeding 6. Electrical properties
are strongly affected by this profound structural change:
Conductivity jumps by a factor of 20 in Si, and of ll in
Ge. '

Predicting details of the changes in local order for the
tetrahedral semiconductors as they melt provides an ir-
resistible challenge to theory. For the most part, recent
theoretical progress in understanding classical liquids and
the melting process has concentrated on re'latively simple
model systems, specifically those with additive pair in-
teractions. Liquified noble gases (Ar, Kr, Xe) typify
such systems, for which the famous Lennard-Jones (LJ)
interaction

ULJ(r) = 4e[(o./r)' (0/r) —]j—
constitutes an important paradigm.

Quite obviously, the tetrahedral semiconductors fall in
a very different class. No reasonable pair potential will
stabilize the diamond structure, as v LJ stabilizes the
close-packed crystals characteristic of the noble gases. It
is not even clear at the outset that any temperature- and
density-independent potential could successfully describe
liquid semiconductors, since they are not molecular insu-
lators but contain conduction electrons. Nevertheless, the
existence of just such a potential (or family of potentials)
is an important topic toward which this work has been
directed.

In Sec. II we propose a specific nonadditive interaction
potential for the condensed phases of Si, and indicate how
it was selected. The molecular-dynamics simulation tech-
nique used to infer local order and other attributes of the

condensed phases that are implied by this potential has
been outlined in Sec. III. That outline also includes a dis-
cussion of the configurational mapping procedure which
we have previously found useful in analyzing the local or-
der that is present in condensed phases. ' In Sec. IV we
present some thermodynamic properties displayed by our
216-atom computer simulations, while in Sec. V we pro-
vide results concerning local order. In Sec. VI we consid-
er results from the mapping onto potential minima. In
Sec. VII we focus briefly on the Lindemann melting cri-
terion, " and indicate the possibility that a new "inverse
Lindemann criterion" for freezing of liquids can be for-
mulated. .In Sec. VIII we assess the overall validity of the
present model, and attempt to identify directions for sub-
sequent improvement and applications.

II. NONADDITIVE POTENTIAL

Any potential-energy function @describing interactions
among X identical. particles can quite generally be
resolved into one-body, two-body, three-body, etc. contri-
butions as follows:

i,j,k
i &j&k

. +v~(1, . . . , X) . (2.1)

In order that this representation be useful in the usual
types of theoretical modeling, it is necessary that the com-
ponent functions v„converge quickly to zero with in-
creasing n.

The single-particle potential v& normally describes wall
and external forces to which the system is subject. These
are absent for the case considered below, so the expansion
(2.1), in principle, begins with the pair-interaction terms.

In view of the fact that the Si crystal consists of atoms
held in place by strong and directional bonds, it seems
reasonable at first sight that the corresponding @could be
approximated by a combination of pair and triplet poten-
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tials, v2 and v3. That will be our point of view in the fol-
lowing. In the same spirit as that behind Eq. (1.1), we
first introduce energy and length units c and o., and then
write

v2(rj ) =Efq(r~/cr),

v3(r;, rj, rk)=Ef3(r; /o, r.~/o, rk!o)
(2.2)

where e is chosen to give fq depth —1, and o is chosen to
make f2(2'~ ) vanish. That f2 must be a function only of
scalar distance is obvious; similarly, f3 must possess full
translational and rotational symmetry.

In the present context, selection of interactions between
Si atoms is a considerably more demanding task than that
confronted when attempting only to describe small dis-
placements from the ideal tetrahedral geometry. The
latter suffices to describe elastic properties and phonon
spectra of the crystalline material. In such a restricted re-
gime it may be appropriate to utilize potentials of the
Keating type. ' Now, however, it is mandatory to span
the entire available configuration space in order to achieve
a satisfactory description of the short-range order in the
liquid phase, and of . the atom-exchanging diffusive
motions that occur continuously in the liquid phase.

The reduced pair potential for use in our study was
selected from the following five-parameter family:

f2(r)= . A (Br ~ r~)exp[(r ——a) '], r ~ a

0, r)a (2.3)

where 3, B, p, and a are positive. This generic form au-
tomatically cuts off at I" =a without discontinuities in any
r derivatives, which is a distinct advantage in any
molecular-dynamics simulation application.

The same cutoff advantage can be extended to the
three-body interactions f3. Specifically, we assign them
the form

diamond structure was indeed the most stable periodic ar-
rangement of particles at low pressure, at least among
simple alternatives. However, after this lattice-sum cri-
terion was satisfied, it was still necessary that the melting
point and the liquid structure inferred for the tentative in-
teraction by the molecular-dynamics simulation also be in
reasonable accord with experiment. These latter criteria
served to contribute to our rejection of several of our ini-
tial choices for parameter sets.

Overall, the most satisfactory parameter set thus far
discovered is the following:

3 =7.049 556277, B=0.602 224 558 4,
p=4, q=0, a =1 80,
A, =21.0, y =1.20 .

(2.7)

This is the choice upon which all results reported in the
remainder of this paper are based.

Figure 1 shows the corresponding binding energy per
atom 0&/X (in reduced units) versus number density p
(also in reduced units) for several simple lattices. Al-
though at zero pressure the diamond structure (DIA) is
preferred, the other cases—simple cubic (sc), body-
centered cubic (bcc), and face-centered cubic (fcc)—are
reasonably close. We believe that this closeness is impor-
tant in assuring that thermodynamic melting to a col-
lapsed liquid structure be possible at a reasonable tem-
perature. By construction, the sum of three-body interac-
tions nearly vanishes for the diamond structure. Al-
though that sum substantially destabilizes the other lat-
tices, these alternative structures partially compensate by
incorporating more of the stabilizing pair bonds than does
the diamond lattice. Evidently, it is important to achieve
a proper balance between these competing effects in order
to model Si successfully.

At the minimum in the diamond curve of Fig. 1,

f3 ( r;, rj', rk ) =h ( r;~', r;k HJ' k ) +h ( r~;, rjk J'k )

+h (r„;,r&~, 6;z~ ), (2.4)

p =0.460o. , @/X= —1.999 993m. . (2.8)

h (rj, rk, 8,;k) =kexp[y(»;, —a) '+y(rk —a) ']

X ( cosign'y +7 ) (2.5)

otherwise h vanishes identically. The "ideal" tetrahedral
angle 0, is such that

where OJ;k is the angle between rj and rk subtended at
vertex i, etc. The function h belongs to a two-parameter
family (A, ,y&0). Provided that both r,j and r;k are less
than the previously introduced cutoff a, it has the follow-
ing form: N —&.2

8-

—1.4

~ —1.6

Q -1.6

fcc bcc

cosset = —
3 (2.6)

so that the trigonometric part of expression (2.5) clearly
discriminates in favor of pairs of bonds emanating from
vertex i with the desired geometry.

We have carried out a limited search over the seven pa-
rameters 3, B, p, q, a, k, and y to identify a reasonable
choice of f2 and f3. An important' component of this
search was an evaluation of lattice sums to ensure that the

—2.2
0.3

I

0.4

MD

0.5 0 6
DENSITY (pa )

FICx. 1. Lattice energy (per atom) vs density for the nonaddi-
tive Si potential. Equation (2.7) provides the parameter set used
for the interactions. The arrow locates the density at which our
molecular-dynamics calculations were performed. (See text for
label legend. )



5264 FRANK H. STILLINGER AND THOMAS A. WEBER 31

F 0.0

talline arrangement, with a random set of very small mo-
menta. The given two- and three-body potentials in N
lead to explicit force expressions for each particle which
enter the Newtonian equations of motion. The latter were
integrated using a fifth-order Gear algorithm, ' and incre-
mental time step At =5 & 10 ~, where the basic time unit
1s

r=o(m/s)' =7.6634X10 ' s . (3.5)

—1.5
0.6 0.8

I I I

1.2 1.4 1.8 1.8 8.0
r/0

FIG. 2. Reduced pair potential vs distance. This function
vanishes identically beyond r = 1.80.

In order for these to correspond to the observed lattice
spacing and atomization energy of crystalline Si at 0 K, it
would be necessary to choose

o =0.20951 nm,

v=50 kcal jmol

=3.4723 & 10 ' erg/at. pair .

(2.9)

Figure 2 shows the reduced pair potential f2 as a function
of reduced distance.

III. MOLECULAR-DYNAMICS SIMULATION

m =4.6457&&10 "g/at. , (3.1)

so that the edge length of the cubic cell must be given the
value

L =7.64614a.=1.60531 nm . (3.2)

Our computer simulation has utilized %=216 atoms in
a cubic cell with fixed volume. Periodic boundary condi-
tions were applied at all six faces of the cell. Because pri-
mary interest concerned the liquid phase, we elected to
keep the mass density equal to that of the real liquid at its
observed melting point, 1410'C, namely 2.53 g/cm .' The
mass of the common stable isotope Si is

Under these circumstances the total energy would remain
constant to at least seven significant figures during runs
typically of several thousand At. Temperature was adjust-
ed by the usual method of scaling all momenta by a com-
mon factor.

During some of the molecular-dynamics runs to be dis-
cussed below, the instantaneous atom configuration
rl(t), . . . , r~(t) was periodically mapped onto the config-
uration rlq, . . . , r~q of a nearby N minimum. In no sense
did this mapping disturb the system s Newtonian dynam-
ics; it was simply a computation carried out in parallel.
The mapping was accomplished by using Newton's
method to find the limiting (scca) solution to the
steepest-descent equations,

dr~ = —V~@,
c&

(3.6)

IV. THERMODYNAMIC PROPERTIES

Figure 3 presents some of our molecular-dynamics data
for the mean potential energy per particle,

I I I

P
P

yQ.
P

P

P
P

where the dynamical configuration supplies the initial
condition. In principle, then, any instantaneous set of
atom positions can be uniquely referred to a mechanically
stable structure. Determining what the available N mini-
ma are for the Si model, and how they are serially sam-
pled at different temperature, constituted one of the im-
portant goals for this project.

The corresponding number density for the 216 atoms,

p =0.48320. (3.3)

A
S. —1.8
V P

P
P

P
P

@/X= —1.992 346m . (3.4)

The molecular-dynamics study for the model was ini-
tiated with the 216 atoms placed in the compressed crys-

exceeds that shown in Eq. (2.8) for the zero-pressure,
zero-temperature crystal. The integer %=216 has just
the proper form to permit the atoms to be arranged in a
defect-free diamond lattice, aligned with -the sides of the
cubic cell, while bonding perfectly across its faces to
periodic-image atoms. The lattice sum for this somewhat
compressed crystal is

I

—8.0 I I I

0 0.02 0.04 0.06 0.0]I 0.10 0.12 0.14 0.18
T

FIG. 3. Mean potential energy per particle vs temperature
for the Si model. The points shown represent a sequence of
molecular-dynamics runs during which the total system energy
was systematically increased from case to case (with equilibra-
tion).
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(q ) = (e) /xE,
versus reduced temperature,

T'=—k~T/c .

(4.1)

(4.2)

The positive temperature points shown in the figure
emerge from a sequence of molecular-dynamics runs (each
preceded by its own equilibration run), between pairs of
which the total energy was monotonically increased. The
perfect crystal at absolute zero provided the starting
point. Runs were subsequently generated by giving atoms
very small random momenta, and then by sequentially
scaling up the momenta between runs by an appropriate
factor greater than unity. After each scaling an equilibra-
tion period was permitted to run SOO time steps followed
by a subsequent averaging period for 1500 steps, while the
system was obviously still in its crystalline phase (lower
branch in Fig. 3). For the remainder of the sequence,
which included melting and heating of the resulting
liquid, the equilibration and averaging periods were 1000
and 3000 steps, respectively.

The retrograde behavior displayed in Fig. 3 is charac-
teristic of a first-order phase change. The existence of a
positive latent heat implies that the temperature will drop
when melting occurs at constant total energy, or, as in the
present circumstance, even when the total energy is slowly
increased.

The liquid branch of the ( y ) -versus- T* curve has been
reproduced during stepwise reduction in total system ener-

gy, and for that reason we believe the results shown in
Fig. 3 are a correct reflection of thermal equilibrium in
our small system. The crystal branch is probably reliable
as well since it agrees accurately below the melting region
with the expected equipartition result for harmonic nor-
mal modes. We have not attempted to recreate that crys-
tal branch by cooling the liquid until it spontaneously
froze.

No doubt the upper limit of stability for the crystal
shown in Fig. 3 at T*—=0.103 represents an effective limit
of superheating. The crystal contained no surfaces or in-
serted defect sites at which melting could easily initiate.
Therefore, the thermodynamic melting temperature must
be somewhat lower. We estimate it to be

0
0

r/a

mind that the molecular-dynamics crystal is under sub-
stantial compression.

The equipartition value of C,*—:C, /Xkzs, the reduced
constant-volume heat capacity that is relevant to the low-
temperature crystal, is equal to

3C, —,
At T* this has been observed to rise to

(4.7)

C,*(T*,cryst) —=2.0 (4.8)

as a result of anharmonicity in the lattice. The. corre-
sponding result for the liquid at T* is found to be

C,*(T*,liq) =—1.6; (4.9)

furthermore, this quantity in the liquid tends to diminish
as T' rises.

V. LOCAL ORDER

The pair-correlation function g(r) offers a convenient
way to observe and analyze local order in condensed sys-

FIG. 4. Pair-correlation function for the Si model in the crys-
tal phase at T*=0.0800.

T* =0.080 . (4.3)

At this temperature the difference in (g) between the
liquid and crystal branches is

(y), —(y), =0.295 . (4.4)

Consequently, the entropy change that would accompany
reversible transfer of the system from crystal to liquid
would be

AS/Nkg =3.7 . (4.5)

b, S(expt)/ks ——3.25 . (4.6)

In comparing these numbers, it is important to keep in

This constant-volume, constant-temperature result can be
compared with the constant-pressure experimental melt-
ing value at 1 atm 0

0

FICx. 5. Pair-correlation function for the Si model in the
liquid phase at T*=0.0817.
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=1+p exp ikr g r —1 dr. (5.2)

Figure 6 shows S(k) for the same liquid state at
T*=0.0817. On account of finite-system truncation er-
rors, the curve shown is inaccurate for kcr ~ 2.5; however,
the remainder of the curve is significant. The most
notable feature is the first maximum at ko =5.3 with an
obvious shoulder at ko. =6.8. This pattern always ap-
pears when the liquid is near Tm. The subsequent maxi-
ma shown in Fig. 6 with diminishing amplitudes occur at
ko. =11.2, 17.1, and 22.2.

When the present results are compared with those from
diffraction experiments ' on molten Si, the conclusion
seems to be that our model is qualitatively successful in
describing local order in the liquid, although moderate
quantitative discrepancies appear. Specifically, the shoul-
dered first peak in S(k) is a very prominent feature in the
experimental results, followed by relatively unstructured
subsequent peaks with diminishing amplitudes. Further-

tems. This function is defined to be proportional to
the mean number of atom pairs with vector separation r,
averaged over all directions of r, with normalization to
unity for a random distribution of atoms.

Figures 4 and 5, respectively, show g(r) extracted from
crystal- and liquid-phase molecular-dynamics runs near
T*. The first of these is highly structured, revealing the
organization of atoms into well-defined coordination
shells. Running coordination numbers n(r) may be ob-
tained from g (r) as follows:

n(r)=4~p J s g(s)ds, (5.1)

and, as expected, this yields four nearest neighbors when
it is evaluated at the deep minimum in Fig. 4 beyond the
fully resolved first peak. Although second- and higher-
order .coordination shells in Fig. 4 run into each other
somewhat, their positions and magnitudes are just as ex-
pected for a vibrating but structurally perfect diamond
lattice. Corresponding g results for the crystal at lower
temperature show greater coordination-shell resolution.

Comparison of the liquid-phase g with that for the
crystal provides stark testimony to the profound structur-
al breakdown that occurs at melting. With the exception
of a broader and considerably lower first peak,
coordination-shell structure, as such, has become very in-
distinct. In particular, the gap appearing in Fig. 4 be-
tween the first and second coordination shells for the
crystal. has disappeared. A broad and weak second max-
imum is present in the liquid-phase g spanning the range
between 1.35 and 1.80 times the distance to the first max-
imum, which is consistent with some minor persistence of
tetrahedral bonding into the liquid. The running coordi-
nation number n (r) is equal to 8.07 at r/o =1.625, the
position of the shallow first minimum in Fig. 5.

It is useful to examine the structure factor S(k) corre-
sponding to a given g (r), on account of its relation to dif-
fraction experiments and to density fluctuations in the
medium at wave vector k. We have, for a liquid,

N

S(k) =X ' g (exp[ik (ri —ri)]. )

—1
0

I

20

ko
30

FIG. 6. Structure factor for the liquid-Si model at
T =0.0817.

more, this S(k) pattern, experimentally, is only observed
for molten Si and Ge among all elemental substances. By
using the cr value in Eq. (2.9) to express our molecular-
dynamics results in more familiar units, it can be verified
that peak and shoulder positions agree satisfactorily with
experiment. The comparison is given in Table I.

Not surprisingly, the direct-space comparison of pair-
correlation functions is also qualitatively satisfactory.
The molecular-dynamics (MD) function displayed in Fig.
5 has its first maximum at ri ——0.256 nm, with

g (ri ) =2.06 (MD);

experimentally, r
&
——0.250 nm and

g (r
& ) =2.23 (expt)

(5.3)

(5.4)

at 1430 C. In addition, the relatively flat behavior ob-
served for g (r) in the present calculations beyond the first
peak also appears in the experimental results. We refer
the reader to figures appearing in Refs. 2 and 3 for specif-
ic details.

The "mean nUmber of nearest neighbors" in liquid Si
experimentally has been reported as 6.4 both by Waseda
and Suzuki and by Gabathuler and Steeb. However, in
neither reference was the precise definition of that quanti-
ty given, nor were limits of uncertainty stated. Conse-

Feature'

First peak
Shoulder
Second peak
Third peak
Fourth peak

Molecular dynamics"

2.53
3.25
5.35
8.16

10.60

Experiment'

2.80
3.25
5.75
8.50

11.20

'Refer to Fig. 6.
bFor T*=0.0817.
From Waseda and Suzuki, Ref. 2, Fig. 1, for liquid Si at
1460'C.

TABLE I. Comparison of structure-factor positions in k
0

space. (Units for k are A '. )
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quently, it is not entirely clear whether our own result for
n (r) at the first g (r) minimum, namely 8.07, is in fact too
large. In any case both experiment and the molecular-
dynamics simulation agree that the "mean number of
nearest neighbors" in liquid Si is substantially less than in
other elemental liquids (typically, 10—12).

VI. MAPPING TO POTENTIAL MINIMA

Previous applications ' have shown that mapping of
system configurations onto nearby potential-energy mini-
ma illuminates the nature of short-range order present in
condensed phases. Furthermore, this technique is useful
in suggesting the form that should be adopted by analyti-
cal theory of the solid-liquid transition. ' '

Numerically solving the steepest-descent equation (3.6)
to locate the relevant minimum for any given initial con-
figuration is a demanding task for the specific 216-atom
system under consideration. Nevertheless, we have done
such calculations for a few selected circumstances that
seemed to warrant the effort.

One of the principal results that has emerged from ear-
lier mapping studies has been that a virtually
temperature-independent inherent structure underlies the
liquid state. While it is true that the pair-correlation
functions g(r, T) are typically and clearly temperature
dependent (at constant density), the corresponding func-
tions gz(r) evaluated for the sets of mapped configura-
tions from each state are not. That is, the temperature
dependence observed for pair correlation in those simple
liquids thus far examined consists entirely of variation in
"vibrational" displacement away from potential minima,
and not in substantial population shifts among regions be-
longing to distinct groups of minima. The models for
which this phenomenon has been previously verified all
involve additive central potentials between the constituent
particles. It is important now to see whether the strong
nonadditivity operative in the present model for Si affects
that phenomenon.

Figure 7 shows the "inherent" pair-correlation function

—1
0 20

kcr

I

30

FIG. 8. Structure factor corresponding to the "inherent"
pair-correlation function of Fig. 7. The ko. &2.5 regime con-
tains substantial truncation error and should be disregarded.

g~(r) obtained from a molecular-dynamics run on slightly
supercooled molten Si at T*=0.0677. Figure 8 provides
the corresponding structure factor. These results are
based on atom configurations for 31 potential-energy
minima which were obtained from molecular-dynamics
configurations separated by 1006,t. The distribution of CI

values at these minima appears to be sufficiently irregular
to suggest that comprehensive and representative
configuration-space sampling has occurred.

The conventional pair-correlation function g(r) for this
supercooled liquid closely resembles that shown in Fig. 5.
However, the mapping onto minima has produced a
dramatic degree of structural enhancement, as might have
been expected. Nevertheless, the sharp features exhibited
by g~(r) clearly are not those of the crystalline solid, as
comparison with Fig. 4 readily reveals.

Figure 9 shows the conventional pair-correlation func-
tion g (r) for a very hot fluid at T*=0.1492. Not surpris-
ingly, this function possesses substantially less short-range
order than that for the cooler liquid (at T"=0.0817) in

0
0

r/o.

FIG. 7. "Inherent" pair-correlation function for liquid Si.
The temperature in the slightly supercooled melt from which
the 31 contributing potential minima were constructed was
T*=0.0677.

0
0

FICi. 9. Conventional pair-correlation function for hot mol-
ten Si at T =0.1492.
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Fig. 5. Figure 10 shows the corresponding "inherent"
pair-correlation function gq(r). The latter represents an
average over 30 configurations at @minima, where the in-
itial configurations along the dynamical trajectory were
separated by 100ht as before.

The two gq's in Figs. 7 and 10 must be regarded as
essentially identical. Differences between the curves are
very small everywhere, and, in any case, are of the order
of statistical errors associated with our necessarily re-
stricted sampling. Once again we conclude that tempera-
ture variations observed for g (r, T) at constant density
arise strictly from amplitude variation of ' vibrational"
motion within regions surrounding minima, and not from
a shifting equilibrium between such regions.

Running coordination numbers nq can be calculated for
gq using Eq. (5.1). On this basis we find, for the nearly
identical gq s in Figs. 7 and 10, that nq is 4.80 at the first
minimum beyond the sharp first peak of gq, and rises to
7.95 at the second minimum. This increment of just over
three atoms occurs at a smaller distance than do second
neighbors in the diamond lattice, and appears to be associ-
ated with the end-to-end distances of nearly-right-angled
arrangements of atom triads.

Although the mechanically stable atom arrangements
which contribute to the gq(r) are amorphous Si deposits,
one must avoid the temptation to identify them with real
amorphous Si formed by various means in the laboratory.
These latter materials doubtless vary in properties with
method of preparation, and may have enjoyed the oppor-
tunity to engage in localized partial crystallization.

The rather deep first minimum at r/a =1.40 in the
common gq function suggests using this distance as a cut-
off criterion for examination of bonding statistics. Thus
any pair of atoms in a mechanically stable packing (4&

minimum) whose separation is less than this cutoff will be
counted as bonded, while any pair with greater distance
will not. Obviously, alternative definitions are possible, in
particular, using the strengths of interaction between
atoms. In any event, our simple geometrical criterion
agrees with the known structure of the diamond lattice,
with all nearest neighbors counted as bonded and no oth-
ers.

TABLE II. Fractions of Si atoms with various numbers of
bonds in the collections of potential minima which define
liquid-phase "inherent structure. "

Number
of bonds'.

Fraction
of atoms

In Table II we present the fractions of Si atoms found,
with this cutoff criterion, to engage in various numbers of
bonds in the collection of @ minima that define inherent
structure for the liquid. Four-coordinate atoms are still
present, but they are dominated by five-coordinate atoms,
and higher coordination numbers frequently appear as
well. Note, however, that the angle-dependent three-body
interactions prevent any occurrence of coordination num-
bers near 12 that would indicate local close packing.

VII. MELTING AND FREEZING CRITERIA

Prior experience indicates how mapping of dynamical-
path configurations onto potential-energy minima can be
a particularly useful tool for studying melting and freez-
ing. ' Consequently, we have applied this technique to a
dynamical sequence during which a somewhat superheat-
ed Si crystal spontaneously underwent nucleation and
melting to produce homogeneous liquid.

In Fig. 11 we present values of 4/X at the minima
which were attained by the steepest-descent mapping. As
before, the elapsed time between successive mappings was
1006,t. At the initial sampling step (labeled 0 in Fig. 11)
the steepest descent brought the system to one of the abso-
lute minima corresponding to a structurally perfect dia-

0.000
0.000
0.201
0.568
0.205
0.024
0.001
0.000

'The bond count utilizes r/o. =1.40 as an upper cutoff criterion.

+
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+y p 0

++ + +++~ +
+ + ++ +
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+
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+
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0
0 2

r jcr

—2.00
0 20

I

40 60 80
sampling step

FIG. 10. "Inherent" pair-correlation function for hot molten
Si at T =0.1492.

FIG. 11. Values of potential energy per particle at minima
attained by periodic mapping during melting.
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mond lattice. At this, and roughly the following 15 map-
pings, the system was recognizably crystalline, with a
temperature T*—=0.102. That the absolute minimum was
not encountered every time during this unmelted "first
stage" reflects the strongly anharmonic character of the
superheated crystal: Thermal fluctuations cause localized
defects spontaneously to form and to annihilate.

After this first stage, nucleation of the liquid occurred,
and the depths of the potential-energy minima produced
by the mapping drifted upward, as Fig. 11 clearly demon-
strates. Judging by the pair-correlation functions and the
distributions of intact bonds as defined above, liquid and
crystal coexist throughout this stage with the former in-
creasing in extent at the expense of the latter.

The second stage, melting, terminates at about mapping
step 80. Subsequently, the depths of the potential minima
show no further upward drift, but fluctuate narrowly
about a mean value
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FIG. 12. Mean distances of atom displacement under the
mappings utilized in Fig. 11.

(&bq )/X= —1.873 . (7.1)

(r)=N ' g ~r) —re ~

j=1
(7.2)

Figure 12 shows these mean scalar displacements for re-
turn to potential minima for each of the same 121 map-
pings upon which Fig. 11 was based. This shows not only
the behavior in the superheated crystal, but the dramatic
effect of melting.

The mean mapping distance in a low-temperature crys-
tal would be determined by the amplitudes of harmonic
phonon motions that are present, and classically should
scale as (T*)' . As the temperature rises toward the
melting point, anharmonic processes could be expected to
increase the mean distance slightly, but it should still
behave qualitatively as in the harmonic regime. The
Lindem ann melting criterion" specifies that melting
occurs when the root-mean-square displacement of atoms
reaches a critical fraction of the lattice spacing, typically
about —,. ' ' At the present level of precision it is un-
necessary to distinguish rms averages from the average
defined in Eq. (7.2) above. The stage-1 mean distances
shown in Fig. 12 average approximately 0.19 times the
lattice spacing in the static crystal, and considering the
fact that the solid is a bit superheated, this is consistent
with Lindemann-law expectations.

After melting, the mean mapping distances presented in
stage 3 of Fig. 12 are approximately 0.29 times the

In this third stage the system is homogeneously liquid, at
T*=-0.0677, and is therefore somewhat undercooled. The
distribution of potential-energy minima sampled by this
relatively cold liquid is substantially the same as that sam-
pled by much hotter liquids at the same density, and this
fact underlies the existence of a temperature-independent
inherent structure.

The mapping operation moves all atoms in a systematic
way until they are simultaneously subject to no force. It
is illuminating to inquire how large on the average these
atom displacements are required to be. For any given
dynamical configuration r &, . . . , r& and its mapping
r&q, . . . , r&q, we can evaluate, for example,

nearest-neighbor separation (defined in the liquid as the
distance to the first maximum of g, about 10% larger
than the lattice spacing). Furthermore, the mean mapping
distances from one case to the next display considerably
greater relative dispersion than those in stage 1 for the
unmelted solid. These greater distances and dispersions
may provide valuable geometric information about the
multidimensional mapping regions encountered in the
liquid phase.

Just as in the situation for the crystal, raising the tem-
perature in the liquid causes the mean mapping distances
for the atoms to increase. At T"=0.1492 they have risen
to 0.39 times the nearest-neighbor separation.

These observations generate an intriguing possibility,
namely that a freezing criterion for liquids might theoreti-
cally exist as a complement to the Lindemann melting cri-
terion for solids. Present evidence seems to suggest that
when cooling the liquid causes the mean atomic mapping
distance to drop to about three-tenths of the neighbor
spacing, freezing occurs. The introduction of the
steepest-descent mapping operation, applicable to any
phase of matter, is the key needed to effect extension of
the simple and appealing Lindemann criterion to liquids,
where, conventionally, its concepts would have been
thought to be totally inapplicable.

Nucleation for the melting process apparently requires
proliferation and aggregation of defects in the anharmonic
crystalline medium. Mapping onto potential-energy mini-
ma is a valuable tool for studying how this occurs. ' One
of the basic questions here concerns the nature of the
separate defects that spontaneously form under thermal
agitation in the solid. By examining the structures and
energies for those minima lying just above the absolute
minimum, it should be possible to answer this question.

The lowest-lying minimum above the absolute
minimum, which was encountered during the stage-1 sam-
pling in Figs. 11 and 12, appeared at sampling step 13.
Its structural excitation energy relative to the perfect-
crystal absolute minimum was found to be 1.445 81m.. For
any geometric definition of bonding with a cutoff in the
range
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VIII. DISCUSSION

(a) PERFECT CRYSTAL

The silicon model examined in this paper seems to be
qualitatively successful in representing condensed phases
of that substance, but it clearly has quantitative deficien-
cies. Since its potential-energy function is based on a very
limited search, there is good reason to believe that signifi-
cant improvements are possible.

One of the quantitative problems raised by the present
version is that of energy scale. In order for the observed
transition temperature, Eq. (4.3), to correspond to the
freezing temperature for liquid Si (1410'C), it is necessary
for the basic energy parameter to have the value

E =-42 kcal/mol, (8.1)

(1) BONDING DEFECT

FIG. 13. Rebonding scheme in formation of a localized topo-
logical defect in the Si crystal.

which is considerably less than the 50 kcal/mol needed to
provide the correct cohesive energy of the crystal, Eq.
(2.9). Although it is possible that changes in Uz and U3

might bring T* down sufficiently far to eliminate the
discrepancy, another option exists. This option involves
augmenting the potential with position-independent
single-particle terms v

~ [see Eq. (2.1)], the source of which
can be argued to lie in the electronic structure of the ma-
terial. For the case considered here, we would have to
have

1.15 (r, /o. (1.45
U~ =-—16 kcal/mol (8.2)

(which includes the choice used earlier), every one of the
216 Si atoms participates in exactly four bonds in this
defect-containing structure. Consequently, the defect
must entail some kind of topological reconnection of the
bonds in the crystal.

In the defect-free Si crystal the bonds are arranged so
that all closed paths along successive bonds are polygons
with an even numbers of sides (6, 8, 10, . . . ). Our exam-
ination of stereo pictures for the defect configuration
under consideration shows that odd polygons have been
introduced at the defect, specifically including pentagons
and heptagons. The rebonding scheme is shown in Figs.
13(a) and 13(b). By construction, this is a locally strained
but mechanically stable arrangement of Si atoms. We are
presently unable to say if such a topological defect would
be an important entity in real Si, but further study of this
possibility seems to be warranted.

to explain the cohesive energy of the crystal. We would
expect v

&
to have some density variation, and therefore to

influence compressibility. In any case, addition of v&

terms to the potential only affects the temperature scale,
but has no influence on the local structure that obtains at
a given reduced temperature.

Many of the same considerations that relate to selection
of a model Si potential are applicable as well to Ge. Their
distinct melting temperatures require different energy and
temperature scaling factors, of course, but also more sub-
tle distinctions must be observed. Measured pair-
correlation functions for the respective liquids at corre-
sponding temperatures show small but significant differ-
ences. ' It will be important eventually to see if the gen-
eral type of molecular-dynamics modeling advocated here
can reproduce those differences.
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