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Abstract Higher order multipole potentials and electrostatic screening effects are introduced to incorporate the dan-
gling bonds on the surface of a metallic nanopaticle and to modify the coulomb like potential energy terms, respectively.
The total interaction energy function for any metallic nanoparticle is represented in terms of two- and three-body po-
tentials. The two-body part is described by dipole-dipole interaction potential, and in the three-body part, triple-dipole
(DDD) and dipole-dipole-quadrupole (DDQ) terms are included. The size-dependent cohesive energy and bulk modulus
are observed to decrease with decreasing sizes, a result which is in good agreement with the experimental values of Mo
and W nanoparticles.
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Key words: higher order multipole potentials, electrostatic screening effect, size-dependent cohesive energy,
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1 Introduction

Currently, it is firmly established that when the size of
materials decreases to nanoscale range, new physical and
chemical properties are occurred in such systems. The
most significant characteristic of materials at this scale is
arising from the bond contractions of the low-coordinated
atoms at the surface. Accordingly, the cohesive energy,
bulk modulus, melting temperature, and other proper-
ties are observed to deviate from their bulk counterparts
and became size and structure dependent properties.[1−3]

Thus, to further the development of future nanoparticles
applications, knowledge of the size, structure, and inter-
atomic forces or potentials between atoms at the nanoscale
is vital. Therefore, it is our interest to investigate more
deeply the size-dependent cohesive energy, bulk modulus,
and the structural stabilities of metallic nanoparticles.

Throughout this paper, it is assumed that a non-
relaxed initial geometries of nanoparticles in nanometer
sizes are constructed from a large bulk BCC or FCC crys-
talline structures using different spherical cutoff diame-
ters. These nanoparticles are expected to favor densely
packed structures, due to the large ratio of surface to vol-
ume atoms, creating many dangling bonds, and making a
strong surface tension. Therefore, higher order multipole
potentials are essential for the description of both inte-
rior and exterior atoms for these different geometries. For
this reason, in this work, the total interaction energy of
a nanoparticle is represented in terms of two- and three-
body potentials. The two-body potential is described by
a dipole-dipole interaction, and in the three-body part,
triple-dipole (DDD) and dipole-dipole-quadrupole (DDQ)
terms are included.[4−5]

Furthermore, each generated nanoparticle is consid-
ered like a point test charge (spherical) as it is immersed
in the bulk crystal. The electron concentration near this
nanoparticle will be perturbed in such a way that the
electric field of the nanoparticle is cancelled by the in-
duced disturbance of the electron concentration, thus, the
nanoparticle atoms are assumed to be screened by the elec-
tron gas of the bulk crystal. Consequently, the coulomb
like potential energy terms in the potential energy func-
tion are modified.[6]

Finally, the present study is based on our two recent
works, where we have proposed the size-dependent po-
tential parameters (SDPP) model to explain the cohesive
energy depression of nanoparticles.[7−9]

With this in mind, this paper is structured as follows:
In Sec. 2, the parametrization of the dipole-dipole interac-
tion potential, the model and the computational method
to predict the size-dependent cohesive energy and bulk
modulus for Mo and W nanoparticles are discussed. In
Sec. 3, the theoretical results of this work compared with
the experimental ones are presented, and therein, we re-
mark on the results and on the possible extensions of this
study.

2 Model and Computational Method

In the last few years many attempts have been de-
voted to predict energetically the most stable structures
of different nanoparticles. The ab initio calculations from
first principles is the most familiar method. However,
in spite of the advent of sophisticated computers, it is
still not practical within the ab initio framework to han-
dle systems containing more than a few tens of atoms,
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and it is also difficult to explore the size-dependent co-
hesive energy of nanoparticles using direct experimental
approaches. Thus, the proper choice of a potential energy
function (PEF) and a satisfactory method like SDPP is
an indispensable way in nanoscience computations.[7−9]

In the SDPP model, we assume that if there is no
external force acting on the nanoparticle, then a PEF
φN (−→r1 , . . . ,−→rN ) of N atoms as function of their positions
is existed, and it can be expanded quite generally into
a many-body potential series containing two- and three-
body potentials:[10]
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where u(−→ri ,−→rj ) and u(−→ri ,−→rj ,−→rk ) are the two-body and
three-body potentials, respectively. This is the so-called
many-body expansion of φN , φN is a measurable quantity,
which describes the total configuration energy (cohesive
energy) of the system, and it is usually believed that the
series has a quick convergence, and therefore, the higher
moments may be neglected.

The relevant two-body part in Eq. (1) is represented
by the dipole-dipole interaction potential:[11]
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where r0 denotes the equilibrium separation between the
centers of any two atoms, and ε is the two-body en-
ergy at rij = r0. The variables m and n are the ex-
ponents for the repulsive and the attractive terms, re-
spectively. To determine the parameters (ε, r0, m, n) a

non-linear least-squares curve fitting is performed. In the
fitting procedure, we have used the binding energy val-
ues of Mo2 and W2 dimers calculated at various inter-
atomic distances by ab initio method.[12] The potential
energy curves estimated by ab initio method and the fit-
ted dipole-dipole interaction potential functions for both
Mo2 and W2 are shown in Figs. 1 and 2. The fitted
dipole-dipole interaction potential parameters for Mo2 are
(ε = 3.98 eV, r0 = 1.95 Å, m = 8, n = 4), whereas the fit-
ted dipole-dipole interaction potential parameters for W2

are (ε = 4.511 eV, r0 = 2.056 Å, m = 8, n = 4). In
these parameters, the energies are in electron volts and
the distances are in Ångström.

Evidently, it is well known that, if the PEF of a sys-
tem includes only two-body part potential, such a PEF
does not stabilize open structures, and does not provide
the proper atomic configuration for trimers. Therefore,
the three-body terms should be included, which make im-
portant contributions to the structure including dangling
bonds and the stability of different nanoparticles, is ex-
pressed as:

u(−→ri ,−→rj ,−→rk ) =
∑

ℓ

ZℓGℓ(
−→ri ,−→rj ,−→rk ), (3)

where the summation includes all the triple-multipole in-
teractions coming from the expansion of the third-order
interaction energy for three atoms, and they have positive
energy contribution. The parameters Zℓ are the interac-
tion constants for the triple-multipole interaction terms
and are to be determined.

Several multipole interactions functional forms of
Gℓ(

−→ri ,−→rj ,−→rk ) have been obtained by Bell[4] and Doren
and Zucker.[5] Further, it has been shown that the most
important contribution is due to the triple-dipole (DDD)
term, and the next dominant dipole-dipole-quadrupole
(DDQ) term, which are given for closed-shell systems as:
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where θi, θj , θk and rij , rik, rjk are the angles and the
sides formed by the three particles i, j, and k, respectively.

Combining Eqs. (1) to (5) and using the fitted dipole-
dipole potential parameters, the effective cohesive energy
per atom φ∗

a for any nanoparticle with a cubic internal
structure may be written as:
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a =

1

2
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where φ∗
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0 ),

r∗ = r0/d. d represents the nearest neighbor distance for

any structure. A8, A4, TDDD, and TDDQ are the lattice

sums and they are given by:
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where g is a geometrical constant that depends on the

inner structure of the nanoparticle, and aij are numbers.

It is obvious that the potential parameters A8, A4,

TDDD, and TDDQ are related to the particle size N , are

related to the inner structure of the nanoparticle through

g, and highly dependent on the potential powers. That is

to say, changing the potential powers means changing the

range of the potential.

On the other hand, the stability condition, which

guarantees the minimum energy configurations of any

nanoparticle at T = 00 K can be obtained by consider-

ing ∂φ∗
a/∂V = 0:

8A8r
∗8 − 8A4r

∗4 + 18Z∗
1TDDDr∗9

+ 22Z∗
2TDDQr∗11 = 0. (10)

This is because the atomic volume V is related to d

through V = N0gd3, where N0 denotes the Avogadro’s

number, and r∗ is related to d through r∗ = (V0/V )1/3 =

r0/d, where V0 denotes the equilibrium volume. Thus,

changing r∗ means changing the volume of the nanoparti-

cle.

Finally, the bulk modulus Bm = V (∂2φN/∂V 2), which

is related to the compressibility of a nanoparticle is given

by:
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where B∗
m = V Bm/Nε.

By defining the first two terms of Eq. (6) as φ∗
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∗), the
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express Eqs. (6) and (11) as
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Although, the three-body terms in Eqs. (4) and (5)

were derived for the closed-shell atomic systems,[4−5] the

values, respectively, φ∗
a, r∗, and B∗

m calculated from

Eqs. (6), (10), and (11) would be expected to be in good

agreement with the observed values of closed-shell atomic

elements. However, for other elements like Mo and W

in our case, it might not be possible in the fitting pro-

cedure to reproduce the bulk observed values, because of

the differences in the electronic structure. Therefore, the

electrostatic screening length phenomena should be con-

sidered. So that, the screening effect exp(αr∗) is assumed

for r∗ dependent terms, and the modified expressions of

φ∗
a and B∗

m for any nanoparticle structure are:
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where α is the screening constant. Evidently, in the fit-

ting procedure, Eqs. (14) and (15) should now satisfy the

cohesive energy and bulk modulus of bulk materials.

3 Theoretical Results, Comparison and Dis-

cussion

Calculations are carried out in unitless quantities us-

ing the reduced equations (10), (14), and (15). First, the

screening constant α, and the energy parameters (Z∗
1 , Z∗

2 )

are obtained to give the best fit to experimental data for

Mo and W bulk structures. In the fitting procedure, the

following values are used as input parameters for bulk Mo:

r0 = 1.95 Å; ε = 3.98 eV are taken from Fig. 1 of this

work, and they are denoted as the equilibrium separation

between the centers of any two atoms and the two-body

energy at rij = r0, respectively. d = 2.72 Å,[6] which is the

nearest neighbor distance, φN/(N) = −6.2 eV/atom;[6]

Bm/(N) = 230 GPA=1.435 eV/Å3;[13] V = N0gd3, with

g = 0.7698 is the geometrical factor of BCC structures.

Accordingly, r∗ = r0/d = 0.715; φ∗
s = φN/(Nε) =

−1.557; B∗
s = V Bm/(Nε) = 5.58. On the other hand,

the potential parameters for bulk BCC structures are

used at this stage and are taken from Refs. [14] and

[5]: A8 = 10.360; A4 = 22.640; TDDD = 14.770;

TDDQ = 15.010. The fitted values are α = −1.002,

Z∗
1 = 2.823, and Z∗

2 = 0.60. While the input parame-

ters for bulk W are: r0 = 2.056 Å; ε = 4.511 eV are

taken from Fig. 2 of this work. d = 2.73 Å;[6] φN/(N) =

−8.55 eV/atom;[6] Bm/(N) = 310 GPA=1.934 eV/Å3.[13]

Accordingly, r∗ = r0/d = 0.753; φ∗
s = φN/(Nε) =

−1.895; B∗
s = V Bm/(Nε) = 6.70, and the fitted values

are α = −1.052, Z∗
1 = 2.036, and Z∗

2 = 0.60.

Consequently, in the nano-range, the potential param-

eters A8, A4, TDDD, and TDDQ are all depended on the

particle size through N , and the investigation is carried

out for BCC and FCC nanoparticles using various spher-

ical diameters 1 ≤ Rcut ≤ 10. For each value of Rcut a

new nanoparticle with new size is generated. The varia-

tions of A8, A4, and TDDD with the particle size and with

different structures were calculated in [8], whereas, in this

work the variation of TDDQ with the particle size and with

different structures are obtained.
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Fig. 1 Potential energy curve of the Mo2 dimer. Cir-
cles are ab initio;[12] solid line is the fitted dipole-dipole
potential.

Fig. 2 Potential energy curve of the W2 dimer. Cir-
cles are ab initio;[12] solid line is the fitted dipole-dipole
potential.

For every generated Mo nanoparticle of inner struc-
ture BCC or FCC, r∗’s are calculated from the stability
condition at Z∗

1 = 2.823 and Z∗
2 = 0.6, whereas, for W

nanoparticles, r∗’s are calculated from the stability con-
dition at Z∗

1 = 2.036 and Z∗
2 = 0.6, respectively. The

positive real root of Eq. (10) is assumed as an accept-
able solution. Then φ∗

s and B∗
s for Mo nanoparticles with

different structures are calculated as a function of N at
α = −1.052, whereas, φ∗

s and B∗
s for W nanoparticles

with different structures are calculated as a function of N
at α = −1.002.

Typically, to make the size-dependent cohesive en-
ergy free from the parameter ε, we calculate the rela-
tive cohesive energy of any nanoparticle with respect to
the cohesive energy of the corresponding bulk material
i.e. φ∗

s/φ∗
0, where we denotes the relative cohesive en-

ergy of bulk material by φ∗
0. It is reported that the co-

hesive energy of Mo nano-particle in the size N = 2000
is −4.25 eV/atom,[15] whereas the cohesive energy of bulk
Mo is −6.2 eV/atom.[6] On the other hand, for the W
nano-particle in the size N = 7000, it’s cohesive energy is
−6.42 eV/atom,[15] and that of the corresponding bulk W
is −8.55 eV/atom.[6]

Fig. 3 The particle size dependence of the relative co-
hesive energy of BCC and FCC Mo nanoparticles. The
star symbols denote the experimental values.[15]

Fig. 4 The particle size dependence of the relative co-
hesive energy of BCC and FCC W nanoparticles. The
star symbols denote the experimental values.[15]

The results of SDPP model for the relative cohesive
energy and the bulk modulus of Mo and W nanoparticles
with different sizes and different structures are shown in
Figs. 3–6. In these figures the solid-symbol lines are the
results calculated by Eqs. (14) and (15), and those with
the star symbols are denoted the experimental values of
Mo and W nanoparticles.[15]

Fig. 5 The particle size dependence of the bulk modulus
of BCC and FCC Mo nanoparticles.
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Fig. 6 The particle size dependence of the bulk modulus
of BCC and FCC W nanoparticles.

From figures, the relative cohesive energy and the bulk
modulus of nanoparticles increase when the particle size
is increased, and approaches to that of the corresponding
bulk metal when N is very large, which reflects the insta-
bility of wholly free-standing nanoparticle in comparison
with the corresponding bulk metal. However, for wholly
embedded nanopartile in a matrix, the situation may be
different and we will discuss this case in a separate work.
Generally speaking, it was shown that the cohesive energy
of a nanoparticle can be increased or decreased depending
on the degree of coherence between the nanoparticle and
the matrix.[16−17]

Also, we noted from Figs. 3 and 4 that the more
densely packed structures are favored in the range 15 <
N < 2000 atoms, which means that nanoparticles un-
dergo structural phase transitions from BCC to FCC. Ev-
idently, to understand the phase transitions the minimum
cohesive energy per atom versus randomly atomic volume
r∗ = (V0/V )1/3 for W nanoparticle of size ≈ 140 atoms in
BCC and FCC crystalline structures are show in Fig. 7.

From this figure we note that, the more densely packed
structure FCC is favored at r∗ = 0.7 which is in this model
the real equilibrium atomic volume of the W nanoparticle
of size ≈ 140 atoms, supporting the idea that nanoparti-
cles usually tend to decrease their surface area in order to
lower the surface energy.[18]

Fig. 7 Variation of cohesive energy per atom versus
atomic volume r

∗ for W nanoparticle of size ≈ 140 atoms
in BCC and FCC structures.

In conclusion, the results obtained in this study are
regarded as additional evidence that the screening effects
and the multi-body forces are important to explain the
structural properties of nanoparticles. Also, the predicted
results are consistent with the corresponding experimen-
tal values for the cohesive energy of Mo and W nanoparti-
cles, and suggest that the two-body dipole-dipole potential
plus three body-potential including the triple-dipole and
dipole-dipole-quadrupole terms can be a possible candi-
date to study the properties of various metallic nanopar-
ticles by considering the size-dependent potential param-
eters model.
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