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About the Thermodynamics Course
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What is Thermodynamics

Definition... History ... Importance

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net

Definition of Thermodynamics

= Thermodynamics is the branch of science concerned with
heat and temperature and their relation to energy and
work.

= The behavior of these quantities is governed by the four
laws of thermodynamics.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 4
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Definition of Thermodynamics

Thermodynamics focuses largely on
how a heat transfer is related to various
energy changes within a physical system
undergoing a thermodynamic process.

Such processes usually result in work
being done by the system and are
guided by the laws of thermodynamics.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 5
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Why study thermodynamics?

= Thermodynamics is essentially the study of the internal
motions of many body systems (e.g., solids, liquids, gases, and
light).

= Many people are drawn to Physics because they want to
understand the world around wus. It turns out that
thermodynamics can explain more things about the world
around us.

In this course we shall explain why heat flows from hot to cold bodies, why
the air becomes thinner and colder at higher altitudes, why the Sun appears
yellow whereas colder stars appear red and hotter stars appear bluish-
white, why it is impossible to measure a temperature below -273°C, why
there is a maximum theoretical efficiency of a power generation unit which
can never be exceeded no matter what the design, why high mass stars
must ultimately collapse to form black-holes, and much more!
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Thermodynamics Course Objectives

Q To be able to state the First Law and to define heat, work, thermal
efficiency and the difference between various forms of energy.

QO To be able to identify and describe energy exchange processes (in terms
of various forms of energy, heat and work).

=2
=2
2

-
2
B!

QO To be able to explain how various heat engines work.

O To be able to explain the concepts of path dependence / independence
and reversibility / irreversibility of various thermodynamic processes.

Q To be able to apply ideal cycle analysis to simple heat engine cycles to
estimate thermal efficiency and work as a function of pressures and
temperatures at various pointsin the cycle.

QO An understanding of the use of the Gibbs and Helmholtz free energies as
equilibrium criteria, and the statement of the equilibrium condition for
closed and open systems.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net

~
Thermodynamics Course Outline 4

Unitz Fundamental Concepts Unit2 Heat and the first law of
thermodynamics

Macroscopic and microscopic point of view,
of
equilibrium, Temperature concept, Comparison

Scope thermodynamics, Thermal
of thermometers, Comparison of temperature
Fahrenheit, Gas

thermometer, The Ideal gas.

scale (Celsius, Kelvin)
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Heat flow, Heat flow depends on the path, The
mechanical equivalent of heat, Heat capacity and
specific heat, Latent heat, Work in a volume
change, Work depends on the path, PV diagram,
The first law of thermodynamics, Internal energy.
The energy equation, T and V independent, Gas
equation during an adiabatic process, Adiabatic
work.
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Thermodynamics Course Outline 4

Unit 3 Equation of state Unit4 Engines, Refrigerators and the
second law of thermodynamics
Equation of state of an ideal gas, equation of state Conservation of work into heat and vice versa, the
of areal gas, PVT surfaces for a an ideal gas, PVT for stirling engine, the steam engine, Internal-
a real substance, Phase diagrams, Triple point and combustion engines, The second law of
critical point, Vapor pressure. thermodynamics, The refrigerator, Reversibility
and irreversibility.

Unit 5 The entropy Unit6 Pure substances

The concept of entropy, Entropy of an ideal gas, Enthalpy, The Helmholtz and Gibbs functions, The
Carnot cycle, Entropy and reversibility, Entropy and Tds equations, Energy equations, Heat-capacity
irreversibility. equations

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 17

Text Book

(1) Heat and thermodynamics by M.W. Zemansky
and R.H. Dittman

(2) Heat and thermodynamics by Brij Lal and N.

Subrahmanyam g e (it Third Edition

Thermodynamics,

\ Kinetic Theory, and Statistical

(3) Thermodynamics, Kinetictheory and AN Thermodynamics

Statistical thermodynamics By F.R.Sears and G.L. : SEARS * SALINGER
Salinger

(4) Physics for scientists and engineering with
modern physics by R.A. Serway

(5) University physics by F.R. Sears and M.W.
Zemansky
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Unit 1: Fundamental Concepts

Lecture 1: Thermodynamics Terminology

Unit 1: Fundamental Concepts

O Scope of Thermodynamics
O Thermodynamics Terminology

Q System
O Process
O Thermal Contact

O Thermal Equilibrium
QO The Zeroth Law of Thermodynamics

0O Temperature and Temperature scale
O The Ideal Gas
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Scope of Thermodynamics

= The study of thermodynamics is an experimental science
concern with the concept of heat and temperature at a :
macroscopic scale. Ps/

The principle of thermodynamics are used by engineers in the design of internal
combustion engines, conventional and nuclear power stations, refrigeration and air-
conditioning system and also rockets, missiles, aircraft, ships, submarine, and vehicles.
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Macroscopic and Microscopic Approaches?

Behavior of matter can be studied by these two
approaches.

Macroscopic Approaches a8l § kJl Macroscopic Properties

. : : .| pressure, volume, temperature,
In macroscopic approach, certain quantity of matter is | _ - rthalow | |
considered, without a concern on the events occurring at | =11trOPY; Enthalpy; Interna

the molecular level. These effects can be perceived by | energy, composition, density,
human senses or measured by instruments. viscosity, surface tension,

. . ) ) ivein lour etc.
Microscopic Approaches augSuwg Suoll gl @9l 9 bl refractive index, colour etc

In microscopic approach, the effect of molecular motion is
considered. Most microscopic properties cannot be
measured with common instruments nor can be perceived
by human senses.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 5
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Thermodynamics Terminology = bh_erm(f“mgngqmlc FT=

The important parts of the study of thermodynamics are a few terms and definitions,
which must be understood clearly, and these are as follows:

(1) System pUaul
A thermodynamic system may be defined as any specified /////////

portion of matter in the universe which is under study. A
system may consist of one or more substances. /

(2) Surrounding buxoll

%
% SYSTEM 4 BOUNDARY
The rest of the universe which exchange energy and matter 7 /
with the system is called the surroundings. Thus, the system 7

is separated from the surroundings by a boundary which //// /
may be real or imaginary. i '
! e Ty

(3) Universe ugsll
System + Surrounding

SURROUNDINGS

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 6
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Thermodynamics Terminology = bhgrm?mmgnamlcs AT
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(4) Homogeneous and Heterogeneous system guilxio jallg yaileioll plaill

A system is said to be homogeneous when it is completely
uniform, for example, a pure solid or liquid or a solution or a
mixture of gases. In other words, a homogeneous system
consists of only one phase. Séﬁﬁhﬁ'\m

A system is said to be heterogeneous when it is not uniform.
In other words, a heterogeneous system is one which
consists of two or more phases.

Thus a system consisting of two or more immiscible liquids

or a solid in contact with a liquid in which it does not SURROUNDINGS
dissolve, is a heterogeneous system. A liquid in contact with

its vapor is also a heterogeneous system because it consists

of two phases.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 7

q
=185 Uemperabure_ |

Thermodynamics Terminology  ~= bherm%mgnqmlps

(5) Types of Thermodynamic Systems &l =Jl SaoluaJl ankail glgil

There are three types of thermodynamic systems, depending on the nature of the
boundary which are as follows:

INSULATED

(i) Isolated system: When the boundary is both sealed

and insulated, no interaction is possible with the O
surroundings.

(ii) Open system: In such system the boundary is open o
and un-isolated therefore, An open system is one which REEER eseree
can transfer both energy and matter to and from its &) soiated (6) Open (©) Closed

surr oundings. Types of system

(iii) Closed system: Here the boundary is sealed but not insulated. Therefore, A closed system is one which
cannot transfer matter but can transfer energy in the form of heat, work and radiation to and from its surroundings

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 8
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Closed system Open system Isolated System
Boundar
Boundary Heat/work  geat/work y Mass
\ Out Out \ " out
Heat/work Mais i Heat/work
in Surroundings
cannot transfer matter but can can transfer both energy and matter no interaction is possible with
transfer energy to and from its surroundings the surroundings
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Thermodynamics Terminology bhermgmgngqmms, =

(8) Thermal contact «s,l,=J1 JLaiVl

Two object are in thermal contact with each other if the
energy exchange can occur between them in the absence
of work done by one in the other

(9) Thermal Equilibrium ;1,21 Ol 5VI

A system in which the macroscopic properties do not
undergo any change with time is said to be in
thermodynamic equilibrium.

A system is said to be in thermal equilibrium. if there is
no flow of heat from one position of the system to No net heal flow
another. This is possible if the temperature remains the
same throughout in all parts of the system.
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(20) Process adoc

Whenever the state of a system changes, it is said to
have undergone a process. Thus a process may be ‘ ‘
defined as the operation by which a system changes from H A A

one state to another.

In a process at least one of the properties of the system o o
changes. >

A change in state of the system is always accompanied R o
by a change in energy. Therefore, a process may also | e y \
be defined as a path of change of a system from one = T
equilibrium state to another which is usually
accompanied by a change in energy or mass.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 11

Isothermal process
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Types of Processes

Different types of processes connecting an initial state, in which, one of the properties to
remain a constant during a process.

Isobaric

i. Isothermal process (T remains constant)
ii. Isobaric process (P remainsconstant)

iii. lsochoric process (V remains constant)
iv. Adiabatic process (Thermally insulated fromthe =

Absolute Pressure

.
JIWN[OAOS]

surroundings). Y S
. 0 0 Y
v. Cyclic process (The process which brings aback Vi B R N
a system to its original state after a series of ™ Yol T |
changes). ET 4 S
vi. Quasi-Static Process The deviation from . .
thermodynamic equilibriumis infinitesimal. ¥ =

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 13
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(11) Reversible and Irreversible Processes i

Reversible process: A process that can be reversed without leaving
any trace on the surroundings.

o———p

A thermodynamic reversible process is one that takes place
infinitesimally slowly and its direction at any point can be reversed by .
an infinitesimally change in the state of the system. A

Irreversible process: A process that is not reversible. N
Allthe processes occurring in nature are irreversible.

Why are we interested in reversible processes?

Pressure ——»
) >

(a) They are easy to analyze and (b) they serve as idealized models to
which the actual processes can be compared. >

Volume ——»

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 14
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Process

¢ Isothermal process
e Isobaric process

e Isochoric process

¢ Adiabatic process

* Cyclic process

* Quasi-Static Process

System

* Isolated system
* Closed system
* Open system

Thermal

Thermal contact Equilibri
quilibrium
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Definition of Temperature

&

Zeroth Law of Thermodynamics
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Definition of Temperature

= Temperature is a property of a system which
determines the degree of hotness. Obviously, it is a
relative term.

= For example: A hot cup of coffee is at a higher
temperature than a block of ice. On the other hand,
ice is hotter than liquid hydrogen.

Em

= Two systems are said to be equal in temperature,
when there is no change in their respective
observable properties when they are brought
together. In other words, “when two systems are at
the same temperature they are in thermal
equilibrium” (They will not exchange heat).

5882 .58E8N

PR I
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Definition of Temperature

Macroscopic definition

On the macroscopic scale, temperature is
the unique physical property that
determines the direction of heat flow
between two objects placed in thermal

contact.
High Low
Temp Temp
~ Object1  Object2
' ’ Heat

9/21/2016

Microscopic definition

On the microscopic scale, temperature
is defined as the average energy of
microscopic motions of a single particle
in the system per degree of freedom.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 5

Zeroth Law of Thermodynamics

If two systems (A and B) are in
thermal equilibrium with a third
system (C) separately

(that is A and C are in thermal
equilibrium; B and C are in thermal
equilibrium),

then they are in thermal equilibrium
themselves (that is A and B will be in
thermal equilibrium.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 6

ZEROTH LAW OF THERMODYNAMICS

Temperature of a system or a body is a physical quantity, which determines whether the system is
in thermal equilibrium with another system in its contact or not.
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Explanation of Zeroth Law

= Let us say T, Tg and T are the temperatures of A, B and C respectively.

= AandCareinthermal equilibrium.

The temperatures of A and B are measured No energy will be
. L to be the same by placing them in thermal exchanged
= Band Careinthermal equilibrium. contact with a thermometer (object C). between A and B

when they are
placed in thermal
contact with each
other.

= A and B will also be in thermal
equilibriumT,=Tg

All temperature measurements are
based on this LAW.

>
=

Zeroth law of thermodynamics
If objects A and B are separately in thermal equilibrium with a third object C, thenA and B are in
thermal equilibrium with each other.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 7

Quiz

Two objects, with different sizes, masses, and temperatures, are placed in thermal
contact. In which direction does the energy travel?

= (a) Energy travels from the larger object to the smallerobject.

= (b) Energy travels from the object with more mass to the one with less mass.

= (c) Energy travels from the object at higher temperature to the object at lower
temperature.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 8
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Thermometers

= Thermometers are devices used to measure the temperature of
a system.

= All thermometers are based on the principle that some physical
property of a system changes as the system'’s temperature
changes.

= Some physical properties that change with temperature are
(1) the volume of a liquid,

(2) the dimensions of a solid,

(3) the pressure ofa gasat constant volume,
(4) the volume of a gas at constant pressure,
(5) the electric resistance of a conductor,

(6) the color of an object.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net
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Types of Thermometers

Physical property Material Type of thermometer
1 Changeinlength Mercury or Alcohol Liquid thermometer
2 Changein pressure Hydrogen Gas Thermometer
3  Changeinresistance Platinum Resistance thermometer
4  Changein electric potential Chromeland Alumel Thermocouple thermometer
5 Change in radiation color Pyrometer Radiation Thermometer
6  Changein susceptibility Magnetic thermometer

= Temperature is measured with thermometers that may be calibrated to a variety of
temperature scales.

= In most of the world (except for the United States and a few other countries), the degree
Celsius scale is used for most temperature measuring purposes.

= The entire scientific world measures temperature using thermodynamic temperature using the
kelvin scale.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 11

In the United States we still use the Fahrenheit scale for cooking and describing
the weather. Most other countries use the Celsius scale for such purposes.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 12



(1) Celsius Temperature Scale

= The degree Celsius (°C) is a unit of temperature
named for the Swedish astronomer Anders Celsius

(1701-1744) who first proposed it.

= The Celsius temperature scale was designed so that
the freezing point of water is o degrees and the

9/21/2016

0°C 100°C

boiling point is 100 degrees at standard atmospheric __—

pressure.

= Since there are one hundred steps between these two
reference points the original term for this system was

Centigrade (100 parts).

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net

Fahrenheit Temperature Scale

= The degree Fahrenheit (°F) is a unit of
temperature named for the german physicist

Gabriel Fahrenheit (1686 - 1736).

= In the Fahrenheit scale of temperature the
freezing point of water is 32 degrees and the
boiling point is 212 degrees placing the boiling
and melting points of water 180 degrees apart.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net
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\ Boiling water

Celsius Fahrenheit
scale scale

{
1OO “C '—<—{ Steam point H— 21

N
’T'l

| 4

100 Celsius deglees
180 Fahrenheit degfees )

\ / \ ///

o°c —-<—{ Ice point }—>— 32°F

| = |

lce and water Bulb
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Temperature Conversions between Fahrenheit scale and Celsius scale

v (Moo T 212 oiow! (silpirpell zu,aidly Sexedl guyadl G A8Vl Eusgil
LY o sJWl JSadb

ML _ C-0 _F-32

N 100-0 212-32

__ € _F-»
M. S AUF 100 180
F=20+32
5
0 32 Tlin OF) — 2 1 ©
L. l N ' a2 j'{'m [-]_32+51[1n C)

T(in °C) = ; [7(in °F)-32]

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 15

Kelvin Temperature scale

= Kelvin temperature scale was introduced by
the Scottish physicist William Thompson
(Lord Kelvin, 1824-1907), and in his honor
each degree on the scale is called a kelvin (K).

= By international agreement, the symbol K is
not written with a degree sign (°), nor is the
word  “degrees” used when quoting
temperatures.

= For example, a temperature of 300 K (not
300 °K) is read as “three hundred kelvins,”
not “three hundred degrees kelvin.” The
kelvin is the Sl base unit for temperature.

Lord Kelvin, 1824-1907

16
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Kelvin Experiment: constant-volume gas thermometer

» When a gas confined to a fixed volume is heated, its EV:;;’;’;E"
pressure increases. Conversely, when the gas is cooled, its . e
pressure decreases. The change in gas pressure with bulb
temperature is the basis for the constant-volume gas 'R'f f
thermometer. : S >
Absolute 3
pressure g’

+100 +200

1 1
- ~—-~ 200 -100
Hypothetical Terfperature, °C Substance whose me:Jr;:;:J;er
1egative-pressure temperature is
region being measured
Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 17
Temperature Conversions between Kelvin scale and Celsius scale
=
100 °C 373K
0°C Zi3K
T'(in °C)=T(in K)-273.15
2713°C UK
Celsius Kelvin
18
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Example 1

= On a day when the temperature reaches 5o°F, what is the temperature in degrees
Celsius and in kelvins?

Tc = 3(Ty — 32) = 3(50 — 82) = 10°C

T=T,+273.15 = 10°C + 273.15 = 283K

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 19

Example 2

= A pan of water is heated from 25°C to 80°C. What is the changein its temperature on
Kelvinscaleand on the Fahrenheit scale?

AT = AT = 80°C — 25°C = 55°C = 55K

s al g Lyl g - "y 7
ATy = ZATe = 2(55°C) = 99°F

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net
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Problem to solve by yourself

= Convert the following temperatures to their values on the Fahrenheit and Kelvin
scales: (a) the sublimation point of dry ice, -78.5°C; (b) human body temperature,
37°C.

= The temperature difference between the inside and the outside of a home on a cold
winter day is 57°F. Express this difference on (a) the Celsius scale and (b) the Kelvin
scale.

= Liquid nitrogen has a boiling point of -195.81°C at atmospheric pressure. Express
this temperature (a) in degrees Fahrenheit and (b) in kelvins.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 21
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The Ideal Gas
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The particles in solids, liquids and gases

T T

Arrangement of Close together Close together Far apart
particles
Regular pattern Random arrangement Random arrangement
Movement of particles  Vibrate on the spot Mowve around each Move quickly in all
other directions
Diagram ‘ . @ . Q@ .
(X
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Properties of solids, liquids and gases

Properties Why they are like this

Solids

They have a fixed shape and cannot flow. The particles cannot move from place to place.

They cannot be compressed. The particles are close together and have no space to move into.
Liquids

They flow and take the shape of their container. The particles are free to move around each other.

They cannot be compressed. The particles are close together and have no space to move into.
Gases

They flow and completely fill their container. The particles can move quickly in all directions.

They can be compressed. The particles are far apartand have space to move into.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 5

Temperature effect on matter Thermal expansion

= All three states of matter (solid, liquid and gas) expand when heated. The atoms
themselves do not expand, but the volume they take up does.
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Thermal expansion of solids, liquids and gases

= When a solid is heated, its atoms vibrate faster about their fixed points. The relative
increase in the size of solids when heated is therefore small. Metal railway tracks have
small gaps so that when the sun heats them, the tracks expand into these gaps and
don't buckle.

= Liquids expand for the same reason, but because the bonds between separate
molecules are usually less tight they expand more than solids. This is the principle
behind liquid-in-glass thermometers.

= Molecules within gases are further apart and weakly attracted to each other. Heat
causes the molecules to move faster, which means that the volume of a gas increases
more than the volume of a solid or liquid.

= However, gases that are contained in a fixed volume cannot expand - and so increases
in temperature result inincreasesin pressure.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 7

Thermal expansion Law

Thermal expansion in one Thermal expansion in two Thermal expansion in three
dimension dimensions dimensions

AL = o L;,AT AA =20 A; AT AV=3aV;AT
Where AL is the change in  Where AA is the change in AV = ﬁ V; AT
length, AT is the change in area.
temperature, o is the Where AV is the chnge in
coefficient of linear Volume, S8 is the
expansion (°C?) or (K?) coefficient of volume

expansion (°C%) or (K?)

DR. HAZEM FALAH SAKEEK || WWW.PHYSICSACADEMY.ORG || WWW.HAZEMSAKEEK.NET 8
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The Unusual Behavior of Water

= Liquids generally increase in volume with increasing temperature. Cold water is an exception to
this rule as you can see from its density-versus- temperature curve.

= As the temperature increases from 0°C to
4°C, water contracts and its density ey
therefore increases. 100

0.99
0.98

= Above 4°C, water expands with increasing 4
temperature and so its density decreases. 096

0.95

p (g/cm®)

1.0000
0.9999
0.9998
0.9997
0.9996
0.9995

02 4 6 8 10 12

Therefore, the density of water reaches a QRO (O ST O
. Temperature (°C)
maximum value of 1.000 g/cm3at 4°C. :

Temperature (°C)

= Asthe water freezes, the ice remains on the surface because ice is less dense than water. The
ice continuesto build up at the surface, while water near the bottom remains at 4°C. If that
were not the case, fish and otherforms of marine life would not survive.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 9

Problem with the initial volume (V,) of the gas

= The volume expansion equation AV= 8 V; AT is based on the assumption that the
material has an initial volume V;before the temperature change occurs.

= The case for gases is completely different.
There is no equilibrium separation for the atoms
and no “standard” volume at a given o
temperature; the volume depends on the size [ ;
of the container. o o v
LI

= As a result, we cannot express changes in o o ° Py
volume AV in a process on a gas with equation '
AV= 8 V; AT because we have no defined
volume V;at the beginning of the process.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 10
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Macroscopic Description of an Ideal Gas

4 variables are needed to completely describe a sample of a
gas:

Temperature (T)
= Pressure (P)
= Volume (V)

= Amount (number of moles) of gas (n)

Piston is now
locked in
place

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net
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Gas in Chamber
Heavy Species ollc
& 0

.
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Tools & Options
Measurement Tools > >

Advanced Options >>

Reset

Gas in Pump

Heavy Species
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Boyle’s Law | Charles’ Law | Avogadro’s

Law
V oc1/P V oc T (Kelvin) V ocn

ConstantT,n ConstantP,n  ConstantT, P

So Vocl/PxnxT

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 13

. . . . . nRT
- Toturn a proportionality into an equation, insert a constant: V' = o

« Or multiply both sides by P:

’\ | Universal Gas Constant |
[Pesswe ]~ py = nRT

™| [ |
| No. of moles |

+ The units of R depend on the units used for P, T, and V.

« If the pressure is in pascals (1 Pa= 1 N/m?) and volume in m3 then
R =8.314 J/mol.K
= If the pressure is in atmospheres and the volume in liters (1 L =103 cm3 = 103 m3 then

R =0.0821 L.atm/mol.K

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 14
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Using value of R (0.0821 L.atm/mol.K) and Equation PV = nRT shows that the volume
occupied by 1 mol of any gas at atmospheric pressure and at 0°C (273 K) is,
nRT
V=—+
P
- (1mol)(0.0821 L atm/mol k)(273K)

=224L
latm

What is the mass of oxygen gas in a 500 L container at 1 atm and 0°C (273 K)?

The number of moles n of a substance is related to its mass m through the expression

m . . . .
n=-r where mis the massin gram and M is the molar mass in gram/mol

_ (200 g, T= 7l
m =\ 22.4L/mo1) 329/m0l =719

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 15

=The ideal gas law can be expressed in terms of the total number of molecules N
where N=nN,

-where N, is the Avogadro's number = 6.022x10%3 molecules/mole.

«One mole of substance is that mass of the substance that contains Avogadro's
number of molecules

N
PV=nRT=—RT
NA

R
=the value i is called Boltzmann's constant K,
A

K = R/N, = 1.38x10-33/K
PV=nRT=NKT Ideal Gas Equation

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 16
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Unit 1: Fundamental Concepts

Lecture 3a: Examples on the Ideal Gas equation

Example 1

A spray can containing a gas at twice atmospheric pressure (202 kPa) and having a

volume of 125.00 cmd is at 22°C.

It is then heated into an open fire. When the

temperature of the gas in the can reaches 195°C, what is the pressure inside the can?

Solution
PV
PV = nRT =) T nR

PV, PV, p_FK

T Tf ) L7,

i

f 468 K
P=(—|P = 202 kP 320 kP
/ (T) ’ (295 K)( ) = ?
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Example 2

Pure helium gas is admitted into a tank containing a movable piston. The initial
volume, pressure and temperature of the gas are 15 L, 2atm and 300K
respectively. If the volume is decreased to 12 L and the pressure is increased to
3.5atm, find the final temperature of the gas.

Solution

Since the gas can not escape from the tank then the number of moles is
constant, therefore, PV = nRT at the initial and final points of the process

V \Y : 121
AP AR —— :(pzvz)T1:35atm 12_I|ters (300K ) = 420 K
T, T, PV, 2 atm. 15 liters
Example 3

One mole of oxygen gas is at a pressure of 6 atm and a temperature of 7°C. (a) If
the gas is heated at constant volume until the pressure triples, (a) what is the final
temperature? (b) If the gas is heated until both the pressure and the volume are
doubled, what is the final temperature?

T T, T
SoT,=3T, =280x3=840K

(@)T,=273+7=280K, p,=3p, =

g
T,

(b) P, =2 Py 1V2 :2\/1
P.Vy _ P,V — PV, _ 4p,V,

Tl T2 Tl T2
T,=4T, =4x280=1120K
Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net A



9/30/2016

Problem to solve by yourself

1. Gas is confined in a tank at a pressure of 11.0 atm and a temperature of
25.0°C. If two-thirds of the gas is withdrawn and the temperature is raised to
75.0°C, what is the pressure of the gas remaining in the tank?

2. (@) Find the number of moles in one cubic meter of an ideal gas at 20.0°C and
atmospheric pressure. (b) For air, Avogadro’s number of molecules has mass
28.9 g. Calculate the mass of one cubic meter of air. (c) State how this result
compares with the tabulated density of air at 20.0°C.

3. An automobile tire is inflated with air originally at 10.0°C and normal
atmospheric pressure. During the process, the air is compressed to 28.0% of
its original volume and the temperature is increased to 40.0°C. (a) What is the
tire pressure? (b) After the car is driven at high speed, the tire’s air temperature
rises to 85.0°C and the tire’s interior volume increases by 2.00%. What is the
new tire pressure?

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 5
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Heat and the first law of
thermodynamics
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Unit 2: Heat and the first law of thermodynamics

Lecture 4: Heat and Internal Energy

Unit 2: Heat and the first law of thermodynamics

Heat and Internal Energy
Specific Heat and Calorimetry
Latent Heat

Work and Heat in Thermodynamic
Processes

The First Law of Thermodynamics

O Some Applications of the First Law of
Thermodynamics

Energy Transfer Mechanisms in Thermal
Processes
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Thermodynamics — Historical Background

< Thermodynamics and  mechanics  were
consideredto be distinct branches of physics.
< Until about 1850
< Experiments by James Joule and others
showed a connection between them.

< A connection was found between the transfer of
energy by heat in thermal processes and the
transfer of energy by work in mechanical
processes.

<+ The concept of energy was generalized to
include internal energy.

< The principle of conservation of energy emerged

James Prescott Joule
as a universal law of nature. 1818 - 1889

British physicist
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Heat and Internal Energy

Internal Energy

Internal Energy is all the energy of a
system that is associated with its
microscopic components —atoms and
molecules— when viewed from a
reference frame at rest with respect to
the center of mass of the system.

9/26/2016

Heat

Heat is defined as the transfer of energy
across the boundary of a system due to a
temperature difference between the
system and its surroundings. We also use
the term heat to represent the amount
of energy transferred (Q).

High Temperature

Low Temperature
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Heat and Internal Energy 0

Heat is not in the following common quotes.

(1) Heat is not energy in a hot substance.
(2) Heatis not radiation.

(3) Heat is not warmth of an environment.
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Units of Heat

> Historically, the calorie was the unit used for heat.

> One calorieis the amount of energy transfer necessary to raise the temperature of 1
g of water from 14.5°C to 15.5°C.

> The “Calorie” used for food is actually 1 kilocalorie.

> Inthe US Customary system, the unitisa BTU (British ~ BTU Defined I
Thermal Unit). % T

SIS

= One BTU is the amount of energy transfer necessary to =
raise the temperature of 1 Ib of water from 63°F to 64°F. D) 1 degree rise F
(1 BTU =1 o55 joules). & 4
o —

are measured in joules. -

HEAT

> The standard unit for heat, work, and internal energy ()2& Al

~N
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Mechanical Equivalent of Heat

> Joule established the equivalence = Ug' Thcrmametee
between mechanical energy and internal W

energy.
> His experimental setup is shown at right. m
¢
> The decrease in potential energy = h
associated of the system as the blocks fall myl |
equals the work done by the paddle Weight
wheel on the water. Insulation
Paddlewheel

DR. HAZEM FALAH SAKEEK || WWW.PHYSICSACADEMY.ORG || WWW.HAZEMSAK EEK.NET 9

Mechanical Equivalent of Heat

o Joule found that it took approximately 4.18 J of @)
mechanical energy to raise the water 1°C. ﬁ' Thermometer

o Later, more precise, measurements determined

the amount of mechanical energy needed to
raise the temperature of water from 14.5°C to

15.5°C. m
1 cal = 4.186 J why
o This is known as the mechanical equivalent of e |
heat. Weight
oA more proper name would be the e
equivalence between mechanical energy and PG
Paddlewheel

internal energy, but the historical name is
well entrenched.
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Example

A student eats a dinner rated at 2000 (food) Calories. He whishes to do an equivalent
amount of work in the gymnasium by lifting 5oKg mass. How many times must he raise
the weight to expend this much energy? Assume that he raises the weight a distance of
2m each time and no work is done when the weight is dropped to the floor.

Solution
1 (food) Calories = 1000 cal

then the work required is 2000x1000 cal = 2x10° cal.
Converting this to joule, then the work required is
W = 2x10¢cal x 4.186J/cal = 8.37x10¢J

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 11
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190 J&VI 88, wlyo sac 0ls adeg nmgh @8Msll s

W = nmgh = 8.37x106J

Since m = 50 Kg, and h = 2m

n = 8.54x10° times \ /]

(= G,

-

oS oy aglloll @l Wlymud] By=d 850 8500 Lyl Lo Jadll g8, JUall 3k al sl
lHeopoll 5luY acluw 12 doyl Gl sy 1igd wsulgs 5 60,1080 (0 b dsd, S (S3du
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Problem to solve by yourself

1. A 55.0-kg woman cheats on her diet and eats a 540 Calorie
(540 kcal) jelly doughnut for breakfast.

(@ How many joules of energy are the equivalent of one jelly
doughnut?

(b) How many steps must the woman climb on a very tall stairway to
change the gravitational potential energy of the woman-Earth
system by a value equivalent to the food energy in one jelly
doughnut? Assume the height of a single stair is 15.0 cm.

(c) If the human body is only 25.0% efficient in converting chemical
potential energy to mechanical energy, how many steps must the
woman climb to work off her breakfast?

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net
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Specific Heat and Calorimetry
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Unit 2: Heat and the first law of thermodynamics

Lecture 5: Specific Heat and Calorimetry

Unit 2: Heat and the first law of thermodynamics

Heat and Internal Energy
Specific Heat and Calorimetry
Latent Heat

Work and Heat in Thermodynamic
Processes

The First Law of Thermodynamics
Some Applications of the First Law of
Thermodynamics

Energy Transfer Mechanisms in Thermal
Processes
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The effect of Heat on substance

O When energy is added to a system and there is no change in the kinetic or potential
energy of the system, the temperature of the system usually rises.

(An exceptionto this statement is the case in which a system undergoes a phase
transition—as discussed in the next lecture.)

O The quantity of energy required to raise the temperature of a given mass of the
substance by some amount varies from one substance to another.

For example
The quantity of energy required to raise the temperature of 1 kg of water by 1°Cis 4186 J

The quantity of energy required to raise the temperature of 1 kg of copper by 1°Cis 387J
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Crust
2.3-3J/(kg®tE)

heat of 2.5 to 3 Joules per (kilogram-°Celsius). Therefore,
the cheese gives up more heat energy to your mouth as it cools to body temperature.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net

Heat Capacity

Suppose that several objects composed of different materials are heated in the same
manner. Will the objects warm up at equal rates?

The answer: most likely not. Different materials would warm up at different rates
because each material has its own heat capacity.

_ _Q
am - o - [

The heat capacity, C, of a particularsample is defined as the amount of energy needed
to raise the temperature of that sample by 1°C.

=If energy Q produces a change of temperature of AT, then Q =CAT §
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Specific Heat Capacity (Specific Heat)

> Specific heat, ¢, is the heat capacity per unit mass.

> If energy Q transfers to a sample of a substance of mass m and the temperature
changesby AT, then the specific heatis

> The specific heat is essentially a measure of how thermally insensitive a substance is
to the addition of energy.

> The greater the substance’s specific heat, the more energy that must be added to a
given mass to cause a particular temperature change.

> The equation is often written in terms of Q: m

Some Specific Heat Values

WLLIAR ORI Specific Heats of Some Substances at 25°C and Atmospheric Pressure
Specific Heat Specific Heat
Substance (J/kg* °C) Substance (J/kg - °C)
Elemental solids Other solids
Aluminum 900 Brass 380
Beryllium 1 830 Glass 837
Cadmium 230 Ice (—5°C) 2090
Copper 387 Marble 860
Germanium 322 Wood 1 700
Gold 129 Liquids
8 £

iron 4? Alcohol (ethyl) 2400
Lead 128 ‘
Silicon 703 Mercury -
Silver 934 Water (15°C) 4 186

Gas

Steam (100°C) 2010
Note: To convert values to units of cal/g - °C, divide by 4 186.
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Example 1
Calculate the energy required to raise the temperature of 0.500 kg of
water by 3.00°C.
Solution
Q = mcAT
Q = (0.500 kg)(4186 J/kg.°C)(3.00°C) =6.3 x 103 J.
Notice that:

= When the temperature increases, Q and AT are taken to be
positive and energy transfers into the system.

= When the temperature decreases, Q and AT are negative and
energy transfers out of the system.
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Quiz
Imagine you have 1 kg each of iron, glass, and water, and all

three samples are at 10°C.

= (@) Rank the samples from highest to lowest temperature after 100 J
of energy is added to each sample.

= (b) Rank the samples from greatest to least amount of energy
transferred by heat if each sample increases in temperature by 20°C.
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Specific Heat of Water

<+ Water has the highest specific heat of _
common materials. o

cool sea breeze

< This is in part responsible for many
weather phenomena:

»Moderate climates near large bodies of
water

»>Global wind systems
»Land and sea breezes

sea cooler

night  land cooler - sea warmer
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Calorimetry

One technique for measuring specific heat involves heating -
a material, adding it to a sample of water, and recording the .
final temperature. ahirer Thermometer

=This technique is known as calorimetry.

= A calorimeter is a device in which this energy transfer Isulated
Stopper
takes place.
=The system of the sample and the water is isolated. , fitckad]
Reaction | Insulated
Cups

Conservation of energy requires that the amount of energy ~ Miiure
that leaves the sample equals the amount of energy that
enters the water.

[ Qcota = ~Qrot NIIN Qgaina = —Qtost calorimeters
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Sign Conventions

If the temperature increases:

= Q and AT are positive
= Energy transfers into the system +Q System -Q

If the temperature decreases:
= Q and AT are negative
= Energy transfers out of the system

The negative signin the calorimetry equation is critical for consistency with the sign

convention.
Qcora = Qo

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 13
Calorimetry
T¢ is .thg final temperature after the system comes to [ ... 4 provmeny; e s
equilibrium.

( h
The subscript w represent values for water and x M
represents the values for the sample whose specific 0. ‘w
heat is to be determined. old T,
=Since each Q = m c AT, the calorimetry equation can be Qo M
expressed as Cx

/ T /
< 7 4
mew(Tf_Tw)=_mex(Tf_Tx) /
Hot sample Cold water

= This can be solved for the unknown specific heat.
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Example 2

A 0.05kg of metal is heated to 200°C and then dropped into a beaker containing
0.4kg of water initially at 20°C. If the final equilibrium temperature of the mixed
system is 22.4°C (a) find the specific heat of the metal. (b) What is the total heat
transferred to water in cooling the metal?

(a) Heat lost by the metal = heat gained by water
—mxc, (Tf - T:) =m,c, (Tf - Tz)
+m,c,(T,—T) =m,c, (T,—T)
(0.05Kg) ¢, (200°C-22.4°C) = (0.4kg)(4186J/kg.C°)(22.4°C-20°C)
c, = 453J/kg.Ce
(b) total heat transferred to water is Q = m,c, (1,— 7)) = 0.05 x 453x(200-22.4) = 4020J
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Example 3

A man fires a silver bullet of mass 2g with a velocity of 200m/sec into a
wall. Whatis the temperature change of the bullet?

The kinetic energy of the bullet E, = 1/2 m v? = 40 J = the heat transferee to the
bullet

Q = mcAT
where c for silver is 234J/kg.C°

Q 40/

AT = e = (Zx 10%kg)(234) /kg.C)

= 85.5CC°
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Problem to solve by yourself

1. A quantity of hot water at 91°C and another cold one at 12°C.
How much kilogram of each one is needed to make an 800 liter
of water bath at temperature of 35°C.

2. Consider Joule’s apparatus. The mass of each of the two
blocks is 1.50 kg, and the insulated tank is filled with 200 g of
water. What is the increase in the water’s temperature after the
blocks fall through a distance of 3.00 m?

3. What mass of water at 25.0°C must be allowed to come to
thermal equilibrium with a 1.85-kg cube of aluminum ini- tially
at 150°C to lower the temperature of the aluminum to 65.0°C?
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Latent Heat
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Unit 2: Heat and the first law of thermodynamics

Lecture 6: Latent Heat

Unit 2: Heat and the first law of thermodynamics

Heat and Internal Energy
Specific Heat and Calorimetry
Latent Heat

Work and Heat in Thermodynamic
Processes

The First Law of Thermodynamics

O Some Applications of the First Law of
Thermodynamics

Energy Transfer Mechanisms in Thermal
Processes
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Eventually, the ice begins to melt at 0° Celsius. What happens to the temperature of the
ice-water mixture as heat is added and the ice continues to melt?

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 3

Phase Changes

< A phase change is when a substance changes from
one form to another.
< Two common phase changes are R BN
+Solid to liquid (melting) A .
< Liquid to gas (boiling)

< During a phase change, there is no change in
temperature of the substance.
<+For example, in boiling the increase in internal
energy is represented by the breaking of the bonds
between molecules, giving the molecules of the
gas a higher intermolecular potential energy.
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Latent Heat

< Different substances react differently to the energy added or removed during a phase
change.

<Due to their different internal molecular arrangements

< The amount of energy also depends on the mass of the sample.

< The higher-phase material is the material existing at the higher temperature.
Example, water is the higher-phase material in an ice-water mixture

< The initial amount of the higher-phase material in a system is m; .
< If an amount of energy Q is required to change the phase of a sample is
Q x Am Q=LAm .
Am

Am = m¢—m; is the change in mass of the higher-phase material

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 5

Latent Heat and mass of substance
Q=LAm
= The quantity L is called the latent heat of the material.
= Latent means “hidden”.

= The value of L depends on the substance as well as the actual phase change.

= The quantity Am refers to the higher-phase material.

= If the entire amount of the lower-phase material undergoes a phase change, the change in mass of
the higher-phase material is equal to initial mass of the lower-phase material.

For example, if an ice cube of mass m on a plate melts completely,
the change in mass of the water is

me=0=m
which is the mass of new water and is also equal to the initial mass
of the ice cube.
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Latent Heat and type of phase change

> The latent heat of fusion is used when the phase change is from solid to liquid.
> The latent heat of vaporization is used when the phase change is from liquid to gas.

> If energy is enters the system:
Latent Heat

> This will result in melting or vaporization

> The amount of the higher-phase material will increase

> Am and Q are positive

Fusion Vaporization

> If energy is extracted from the system:

> This will result in freezing or condensation

> The amount of the higher-phase material will decrease Solid to Liquid Liquid to Gas
> Am and Q are negative
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Sample Latent Heat Values

Latent Heals of Fusion and Vaporization
Latent Heat
Melting of Fusion Boiling Latent Heat
Substance Point (°C) (J/kg) Point (°C) of Vaporization (J/kg)
Helium —269.65 5.23 X 10° —268.93 2.09 x 10*
Oxygen —218.79 1.38 x 10* —-182.97 2.13 X 10°
Nitrogen —209.97 2.55 X 10* —195.81 2.01 X 10°
Ethyl alcohol —-114 1.04 X 10° 78 8.54 X 10°
Water 0.00 3.33 X 10° 100.00 2.26 X 108
‘ Sulfur 119 3.81 X 104 444.60 3.26 X 10°
Lead 327.3 2.45 X 10* 1 750 8.70 X 10°
Aluminum 660 3.97 X 10° 2 450 1.14 X 107
Silver 960.80 8.82 x 10* 2193 2.33 X 10°
Gold 1 063.00 6.44 X 101 2 660 1.58 X 106
Copper 1 083 1.34 X 10° 1 187 5.06 % 10°
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Graph of Ice to Steam

120

o
=
—

90

T
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| ]

| |

: : !Sleam

1 Water + steam | /

| #l
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| ) | 11

lee 627 396 815 3070 3110

Energy added (J)

The energy required to convert a 1.00-g cube of ice at -30.0°C to steam at
120.0°C.
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Warming lce, Graph Part A

120
> Start with one gram of ice at —30.0°C. 0T
> During phase A, the temperature of the 60

ice changes from —30.0°C to 0°C. &

=5
> Use Q =m,c; AT 0

> In this case, 62.7 J of energy are
added.
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Melting Ice, Graph Part B 50 -

> Once at 0°C, the phase change (melting) 90 -
starts.

60

> The temperature stays the same although
energy is still being added.

T (°C)

)
(=]
|

> Use Q=L; Am,=Lim;

> The energy required is 333 J.
> On the graph, the values move from 62.7 J to 396 J.
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Warming Water, Graph Part C

120

> Between 0°C and 100°C, the material is
liquid and no phase changes take place.

> Energy added increases the temperature.

> Use Q=m,c, AT
» 419 J are added
» The total is now 815 J
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Boiling Water, Graph Part D

> At 100°C, a phase change occurs
(boiling).
120 -

> Temperature does not change. L

90

> UseQ= L, Amg = L, m,
> This requires 2260 J
> The total is now 3070 J

60

Water + steam

1 1 1 1 1
1500 2000 2500 3000

Energy added (])
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Heating Steam, Graph Part E

» After all the water is converted to steam,
the steam will heat up. D E

——

> No phase change occurs.

Steam

| e e

> The added energy goes to increasing the Water + steam
temperature.
> Use Q =mgc AT | |

1 1
> In this case, 40.2 J are needed. 1000 1500 2000 2500 000
3070 3110

» The temperature is increasing from 100° C to seeie
120° C.

» The total is now 3110 J.
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Quiz
Suppose the same process of adding energy to the ice cube is performed as discussed

above, but instead we graph the internal energy of the system as a function of energy
input. What would this graph look like?

Eim U)

1 1
0! 1500 1000 1500 2000 2500 3000

627 %96 815 3070 9110
Energy added (J) ——
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Example 1

What mass of steam initially at 130°C is needed to warm 200 g of water in a 100-g
glass container from 20.0°C to 50.0°C?

Solution
The steam undergoes three processes: first a decrease in temperature to 100°C,
Q, = my, AT,
then condensation into liquid water,
Q,=L,Am;,= L,(0 —m) = —m.L

finally a decrease in temperature of the water to 50.0°C.

v

QS = mscw AThot water
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= the energy transfers in these three stages
Qhot = Ql + Q2 + Q?a = ms(cs AT; - Lv + CwAThotwater)

= The 20.0°C water and the glass undergo only one process, an increase in temperature
to 50.0°C.
Qcold = Myt AT,

cold water lass

+ my, ATg

Qcota = —Qhot
MGy AT;old water + mgcg A“Tgl.';\ss = _ms(cs Arv B Lﬂ + Cy AThot war.er)

(0200 kg)(4 186 ]/kg - °C)(50.0°C — 20.0°C) + (0.100 kg)(837 J/kg - °C)(50.0°C — 20.0°C)
* (2010]/kg - °C)(100°C — 130°C) — (2.26 % 10°]/kg) + (4 186 ] /kg - °C)(50.0°C — 100°C)

=1.09x 102kg= 109g
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Problem to solve by yourself

1. How much energy is required to change a 40.0-g ice cube from ice at
210.0°C to steam at 110°C?

2. A 75.0-g ice cube at 0°C is placed in 825 g of water at 25.0°C. What is the
final temperature of the mixture?
3. A 3.00-g lead bullet at 30.0°C is fired at a speed of 240 m/s into a large

block of ice at 0°C, in which it becomes embedded. What quantity of ice
melts?

4, Steam at 100°C is added to ice at 0°C. (a) Find the amount of ice melted
and the final temperature when the mass of steam is 10.0 g and the
mass of ice is 50.0 g. (b) What If? Repeat when the mass of steam is 1.00
g and the mass of ice is 50.0 g.

5. In an insulated vessel, 250 g of ice at 0°C is added to 600 g of water at
18.0°C. (a) What is the final temperature of the system? (b) How much ice
remains when the system reaches equilibrium?
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State Variables

= State variablesdescribethe state of a
system.

. . Variables
= Variablesmay include:

= Pressure, temperature, volume, internal

energy
= The state of anisolated system can be E

specified onlyif the system s in thermal

equilibriuminternally. p—
nterna
= For a gasin a container, this means every ST Energy
part of the gas must be at the same
pressure and temperature.
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Transfer Variables

= Transfervariables are zero unless a process
occursin which energy is transferred across

the boundary of a system. TransferVariables

= Transfervariables are not associated with any
given state of the system, only with changes
in the state.

= Heat and work are transfer variables.

—

= Transfervariable can be positive or negative,
depending on whether energy is entering or
leaving the system.
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Work in Thermodynamics

o Work can be done on a deformable system, such as a
gas.

o Considera cylinderwith a moveable piston.

o Aforceisappliedto slowly compressthe gas.

o The compressionis slow enough for all the system
to remain essentially in thermal equilibrium.

o Thisis said to occur quasi-statically.
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Work in Thermodynamics

o The force exerted by the gas on the pistonis F = PA

The piston is pushed downward by a force F = —Fj

(0]

through a displacementof dr = dyj

(e]

o the work doneonthe gasis

dw = F.d# =—Fj.dyj = —Fdy = —PAdy
o Ady isthe changein volume of the gas, dV.

o Therefore, the work done on the gasiis

dW = —PdV
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Work in Thermodynamics
o Interpreting dW = —PdV

= If the gasis compressed, dV is negative and the work done on the gas is positive.
= If the gas expands, dV is positive and the work done on the gas is negative.
= If the volume remains constant, the work done is zero.

*The total work doneis:

Vy
W = —J PdVv
Vi

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 7

PV Diagrams

= Used when the pressure and volume are known at each —
step of the process. e work done on a gas

equals the negative of the area

= The state of the gas at each step can be plotted on a graph Wiler e e Ihen
is negative here because the

calleda PV dlagram. volume is decreasing, resulting

= This allows us to visualize the process through which the gasis in positive work.
progressing.

= The curve is called the path.

= The work done on a gasin a quasi-static process that takes
the gas from an initial state to a final state is the negative
of the area under the curve on the PV diagram, evaluated
between the initial and final states.

= Thisistrue whether or not the pressure stays constant.

= The work done does depend on the path taken.

DR. HAZEM FALAH SAKEEK || WWW.PHYSICSACADEMY.ORG || WWW.HAZEMSAKEEK.NET 8



Work Done By Various Paths

A constant-pressure
compression followed by a
constant-volume process

A constant-volume process

followed by a constant-
pressure compression

An arbitrary
compression

10/5/2016

P
J
Pf -
Pl i
i | "
: L—v 14 14
7 v,
a8
= Each of these processes has the same initial and final states.
= The work done differsin each process.
= The work done depends on the path.
DR. HAZEM FALAH SAKEEK || WWW.PHY SICSACADEMY.ORG || WWW.HAZEMSAK EEK.NET 9
e
Py y n=1mol
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Constant Volume then r x10ra
constant Pressure  GmiD) |7 o
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Constant Pressure then
constant Volume (sim32 )
P i )
Ve v v
"
By !
Constant Temperature
_ '._.sim 3 )
P, ‘ .
LV vV
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Work From a PV Diagram, Example 1

A constant-pressure
compression followed by a
constant-volume process

= The volume of the gasis first reduced from V; to
Vrat constant pressure P;

= Next, the pressure increasesfrom P;to P by
heating at constantvolume V

W = —P,(V,- Vi)

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net

Work From a PV Diagram, Example 2

A constant-volume process
followed by a constant-
pressure compression

= The pressure of the gas s increased from P; to Py at
a constantvolume.

= The volumeis decreasedfrom V;to V;
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Work From a PV Diagram, Example 3

= The pressure and the volume continually change.
» The workis some intermediate value between

_Pf(vf_\/l) and _Pi(vf_ VI)

= To evaluate the actual amount of work, the function P (V)

must be known.
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Energy Transfer

= The energy transfer, Q, into or out of a system also
depends on the process.

= The energy reservoir is a source of energy that is
consideredto be so great that a finite transfer of
energy does not change its temperature.

= The pistonis held at its internal position by an
external agent.

DR. HAZEM FALAH SAKEEK || WWW.PHYSICSACADEMY.ORG || WWW.HAZEMSAKEEK.NET
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An arbitrary
compression

:

The gas is
initially at
temperature 7;.

Energy reservoir at 7;
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Energy Transfer

= The external force is reduced. —
e han
reduces its
downward force,
allowing the
piston to move
up slowly. The
energy reservoir
keeps the gas at
temperature 7;.

= The piston is movingupward and the gas is doing
work on the piston.

= During this expansion, just enough energy is
transferred by heat from the reservoir to the gas to
maintain a constanttemperature.

Energy reservoir at 7;

DR. HAZEM FALAH SAKEEK || WWW.PHYSICSACADEMY.ORG || WWW.HAZEMSAK EEK.NET

Energy Transfer, Isolated System

The membrane
is broken, and
the gas expands
freely into the
evacuated region.

= The systemis completely thermally insulated.

= When the membrane is broken, the gas
expands rapidly into the vacuum until it
comprisesthe final volume.

The gas is
initially at
temperature
T; and
contained
by a thin
membrane,
with vacuum
above.

= The gas does no work because it does not
apply a force.

= Noenergy is transferred by heat through the
insulating wall.
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Energy Transfer, Summary

> Energy transfers by heat, like the work done,
depend on the initial, final, and intermediate
states of the system.

> Both work and heat depend on the path
taken.

> Neither can be determined only by the end
points of a thermodynamic process.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net

Example 1
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Energy Transfer

An ideal gas is enclosed in a cylinder with a movable piston on top of it. The piston
has a mass of 8000 g and an area of 5.00 cm? and is free to slide up and down,
keeping the pressure of the gas constant. How much work is done on the gas
as the temperature of 0.200 mol of the gas is raised from 20.0°C to 300°C?

Solution:

Vi
For constantpressure W = —J PdV =-PAV =-PWV;—-V;)
14

i

nRT nRT
W=—P< Ph_ c

—nR(Tp—T)

W = -nRAT = -(0.200 mol)(8.314 J mol - K)(280 K) = -466 J

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net



10/5/2016

Problem to solve by yourself
1. Determine the work done on a gas that expands from i to f as indicated in the
Figure.

P (Pa)

6 X 10°
4 % 106

2 X 106
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The First Law of Thermodynamics
and Some Applications
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The First Law of Thermodynamics

« The First Law of Thermodynamics is a special case of the Law of Conservation of
Energy.

- It is a special cases when only the internal energy changes and the only energy
transfers are by heat and work.

+ The First Law of Thermodynamics states that
AE,, = Q+W

« All quantities must have the same units of measure of energy (Joule).
« The internal energy is a state variable.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 3

Case 1: Isolated Systems

= Anisolated system is one that does not
interact with its surroundings.

= No energy transfer by heat takes place.

= The work done on the system is zero. \__o “_/
B Y
Q=W =0, MATTER \J \_/
DBy, = 0 I =
The internal energy of an isolated system
remains constant.
Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net A
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Case 2: Cyclic Processes

= Acyclic process is one that starts and ends in the

same state.
. . -~
= This process would not be isolated. P
= On a PV diagram, a cyclic process appears as a 2
closed curve. path
A
= Theinternal energy must be zero
path
“AEj, = 0 1 B
“Q = -W .
V"

= In a cyclic process, the net work done on the system
per cycle equals the area enclosed by the path
representing the process on a PV diagram.
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Some Applications
of the First Law of
Thermodynamics
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(1) Adiabatic Process

- An adiabatic process is one during = Ifthe gasis compressed adiabatically, W

which no energy enters or leaves is positive so AE,; is positive and the
the system by heat.i.e.Q = 0 temperature of the gas increases.
= This is achieved by: = If the gas expands adiabatically, the

= Thermally insulating the walls of temperature of the gas decreases.
ISR, = Some important examples of adiabatic

» Having the process proceed so processes related to engineering are:
quickly that no heat can be : o
exchanged. = The expansion of hot gases in an internal

combustion engine

»Since Q=0,

= The liquefaction of gases in a cooling system

AEint =W = The compression stroke in a diesel engine
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(2) Adiabatic Free Expansion

= The process is adiabatic because it takes place
in an insulated container.

The membrane
is broken, and
the gas expands
freely into the
evacuated region.

= Because the gas expands into a vacuum, it
does not apply a force on a pistonand W = 0.

= SinceQ =0andW =0,
AE, . =0

The gas is
initially at
temperature
T; and
contained
by a thin
membrane,
with vacuum
above.

and the initial and final states are the same.

No change in temperature is expected. (c] (d]

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 8
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(3) Isobaric Processes

= Anisobaric process is one that occurs at a constant
pressure.

= May be accomplished by allowing the piston to
move freely so that it is always in equilibrium
between the net force from the gas pushing
upward and the weight of the piston plus the
force due to atmospheric pressure pushing
downward.

= The values of the heat and the work are generally
both nonzero.

The work doneisW = —P (Vf— Vi) - \Y4
where P is the constant pressure.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 9

(4) Isovolumetric (isochoric) Processes

= Anisovolumetric process is one in which there is no
change in the volume.

= This may be accomplished by clamping the piston
at a fixed position.

= Since the volume does not change, W = 0.

= From the first law, AE;,, = Q

If energy is added by heat to a system kept at
constant volume, all of the transferred energy
remains in the system as an increase in its internal
energy.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 10



(5) Isothermal Process
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An isothermal process is one that occurs at a
constant temperature.

= This can be accomplished by putting the
cylinder in contact with some constant-
temperature reservoir.

n é

Since there is no change in temperature,

AEint = 0. The curve is

called an
Therefore, Q = — W P \ isotherm
Any energy that enters the system by heat v

must leave the system by work.
PV =nRT = constant

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 1!

Isothermal Expansion

Because it is an ideal gas and the process is quasi-static, the ideal gas law is valid for
each point on the path.

Ve v.NnRT v dV
W = _fv,- PdV = -J‘v, TdV=—nRTJ‘W Vv

f

V4
W =nRTIn| L
n n(VJ

Numerically, the work equals the negative of the area under the PV diagram.
If the gas expands, V; >V, and the value of the work done on the gas is negative.

If the gas is compressed, V¢ <V, and the value of the work done on the gas is positive.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 12
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No heat exchanged
Q=0andAE;,, =W

Adiabatic

Constant pressure
Isobaric W=—-PV;-Vi),
AEint = Q +W
Special Processes

Constant Volume

Isochoric W=0,AE,, = Q

Constant temperature

Isothermal AE;,,=0and Q = -W

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net

Examples and
Discussion
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Quiz1

Characterize the paths in the Figure as isobaric, isovolumetric, isothermal,
or adiabatic. For path B, Q =0. The blue curves are isotherms.

P

A = Isochoric
B = Adiabatic
C = Isothermal

C = Isobaric

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 15

Quiz 2

= In the last three columns of the following table, fill in the boxes with
the correct signs (-, +, or 0) for Q , W, and AE;,.. For each situation,
the system to be considered is identified.

Situation System Q w AE;,
Rapidly pumpingup a Air in the pump
bicycle tire

Pan of room-temperature ~ Water in the pan
water sitting on a hot stove

Air quickly leaking out of a  Air originally in the balloon
balloon

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 16
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Example 1

A 1.0-mol sample of an ideal gas is kept at 0.0°C during an expansion from
3.0 to 10.0 L. (A) How much work is done on the gas during the expansion? (B)
How much energy transfer by heat occurs between the gas and its surroundings in
this process? (C) If the gas is returned to the original volume by means of an
isobaric process, how much work is done on the gas?

(A) How much work is done on the gas during the expansion? Imagine a
cylinder is immersed in an ice—water bath, and the piston moves outward so that the

volume of the gas increases. Vv
W= nRTIn ()

J

i 3.0L
= (1.0 mol)(8.81 J/mol - K)(273 K) In (10.0 L)

= —27X%10°]

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net At/

(B) How much energy transfer by heat occurs between the gas and its
surroundings in this process?
2 2 AE. = Q+ W

0=Q+ W
Q=-W= 27X10%]

(C) If the gas is returned to the original volume by means of an isobaric process,
how much work is done on the gas?

nRT;
W=—P(V,~ V)= -

Vi

1

(V= V)

1.0 mol)(8.31 |/mol - K)(273 K
S ( )1(00 i e 3)( )(3_0 X 107%m® — 10.0 X 107 m?)
o m

= 1.6 X 103]

The work done on the gas is positive because the gas is being

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net
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Example on the first law of
thermodynamics
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WE

Unit 2: Heat and the first law of thermodynamics

Lecture 9: Examples on the First Law of Thermodynamics

AEint= Q+W

Adiabatic

Isobaric

Special Processes

Isochoric

Isothermal

No heat exchanged
Q=0andAE,,, =W

Constant pressure

W =—PV,-Vi),AE,,
=Q+w

Constant Volume
W=0,AE,,,=Q

Constant temperature
AE;,=0andQ = -W
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Example 1

A thermodynamic system undergoes a process in which its internal energy
decreases by 500 J. Over the same time interval, 220 J of work is done on the
system. Find the energy transferred from it by heat.

AEint = Q + W
AE,,, = —500 Joule internal energy decreases
W = 4220 joule work is done on the system
Q=AE,,— W

Q =-500] — 220] = —720]
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Suppose 1.00 g of water vaporizes isobarically at atmospheric pressure
(1.013x10° Pa). Its volume in the liquid state is V; = Vj;qig = 1.00 cm3, and its
volume in the vapor state is Vi = V, 5, = 1671 cm?3. Find the work done in the
expansion and the change in internal energy of the system. Ignore any
mixing of the steam and the surrounding air; imagine that the steam simply
pushes the surrounding air out of the way.

Solution: Notice that the temperature of the system does not change. There is a phase change
occurring as the water evaporates to steam.

the expansion takes place at constant pressure
W= —P(V,~ V)

= —(1.013 X 10° Pa)(1 671 X 10~ m® — 1.00 X 10~5 m?)
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The energy transferred into the system by heat we use the latent heat of vaporization
Q= L,Am,= m.L,= (1.00 X 107 kg)(2.26 X 10°J/kg)

= 2960 ]

From the first law we can find the change in internal energy of the system:

AE, =0+ W=2260] + (—169]) = 2.09k]

= The positive value for AE; , indicates that the internal energy of the system increases.

= The largest fraction of the energy (2090 J/ 2260 J = 93%) goes into increasing the
internal energy of the system.

= The remaining 7% of the energy transferred leaves the system by work done by the
steam on the surrounding atmosphere.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 5

Example 3

= A 1.0-kg bar of copper is heated at atmospheric pressure so that its
temperature increases from 20°C to 50°C.

(A) What is the work done on the copper bar by the surrounding atmosphere?
(B) How much energy is transferred to the copper bar by heat?
(C) What is the increase in internal energy of the copper bar?

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 6
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Example 3 solution

Because the expansion takes place at constant atmospheric pressure, we categorize the
process as isobaric.

(A) What is the work done on the copper bar by the surrounding atmosphere?
W= —-PAV
W= —PBV, AT) = —P3aV; AT) = —3aPV, AT

W= —sap(%) AT

1.0 kg
8.92 X 10° kg/m’®

W= —3[1.7 X 10 7% (°C) 1](1.018 x 10° N/mQ)( )(50°c —20°C)

= 17x1072]

Because this work is negative, work is done by the copper bar on the atmosphere.
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(B) How much energy is transferred to the copper bar by heat?

0= mc AT = (1.0 kg)(387 J/kg - °C)(50°C — 20°C)
= 1.2 X 10¢]

(C) What is the increase in internal energy of the copper bar?
AE = Q+ W=12X10*] + (-1.7 X 1072])
= 1.2 X 10%]

= Most of the energy transferred into the system by heat goes into increasing the
internal energy of the copper bar.

= Hence, when the thermal expansion of a solid or a liquid is analyzed, the small amount
of work done on or by the system is usually ignored.
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Example 4

An ideal gas initially at 300 K undergoes an isobaric expansion at 2.50 kPa. If the
volume increases from 1.00 m3 to 3.00 m?® and 12.5 kJ is transferred to the gas by
heat, what are (a) the change in its internal energy and (b) its final temperature?

(A) the change in its internal energy AEint =Q+W
W = —PAV for a constant-pressure process
~AE;,, = Q — PAV

AE = 125 x 103] — (250 x 103N/m?)(3.00m3 — 1.00m?) = 7500 ]

(B) Since pressure and quantity of gas are constant, we have from the ideal gas equation

i Ve - T V2 T, == T —<3'00m3>300K—900K
T, T, 2= \y,) "t z -

1.00m3
Example 5
A thermodynamic process is shown in
Figure. In process ab, 600J of heat are PA
added, and in process bd 200J of heat are 8x10%a b > d
added. Find
A. the internal energy change in process ab
A N
B. the internal energy change in process abd
C. the total heat added in process acd 3x10°%a = 5> &
>
2x10'm’ Ex10'm’ v
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Example 5 solution

(a) |n ab W = O (@t‘ ﬁg\ JL“‘AM 138 &“— ‘*—‘\j) and AEint(ab) = Q = 600J
(b) in bd pressure is constant

W = -P(V, - V,) = -[8x10% x (5x103 - 2x103)] = -2408){10.::A b o
Wy = - 240 + 0 = - 240J
Qg = 600 + 200 = 800J A &
AEinianay = 800 + (-240) = 560J
(c) in acd AE;ycq) = 560J as well! SRS a—>—¢
W,y = -[3 x 104 x (5 x 10 - 2 x 109)] = -90J R R T——
Qacd = AEinyaca) - W = 560 — (- 90) = 650J
Dr. Hazem Falah Sakeek | wwwiphysiteatait i L 1
Example 6
When a system is taken from state A to state B along
the path ACB, 80J of heat flow into the system and F#
the system does 30J of work,
(&) How much heat flow into the system along the ¢ ~* B
path ADB if the work done by the system is 10J. \
(b) The system is returned from the state B to A along 1 |
the curved path. the work done on the system is 20J A N D
(c) If E;1a=0, E;,;p=40J, find the heat absorbed in the

{:‘II’

process AD and DB.
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Example 6 solution

(a) How much heat flow into the system along the path ADB if the work done is
10J.

A (ace) = AEint (apB) PA
Along the path ACB c B
AEinace) = Qace * W \
- 80 + (-30) = 50J 1
Hence AE;y (ace) = AEiniape) = Qapg + W = 50J A ’ P

<:|l’

Qaps =50J - W
Qaps = 50 — (-10) = 60J
(Note: the negative sign for the work because work done by the system.)
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(b) The system is returned from the state B to A along the curved path. the work done on
the system is 20J

F 4
W =420 (sl o Jy o la Jad)
c N B
Q = AEjy (BA) ~ W
= -50 - 20 = -70J 1
(The negative sign show that heat is liberated by the system) A ” D

Fa

(©) Ena=0 & Epp=40] & AEjag =50) then Ejp=50.

Qap = (Einp - Eina) - W

In the process ADB, 10J of work is done = work done from A to D is 10J and from D to B
is zero (at constant volume)

for AD Qup = (40 - 0) — (-10) = 50J
for DB Qps = (Eintg = Einp) - W
= (50 - 40) - 0 = 107
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Problem to solve by yourself

1. A gas is taken through the cyclic process
described in the Figure. (a) Find the net energy
transferred to the system by heat during one
complete cycle. (b) What If? If the cycle is
reversed—that is, the process follows the path
ACBA—what is the net energy input per cycle

| |
2 B E%?kg block of aluminum is warmed at A——L—1—V(m?
atmospheric pressure so that its temperature 6 8 10
increases from 22.0°C to 40.0°C. Find (a) the
work done on the aluminum, (b) the energy
added to it by heat, and (c) the change in its
internal energy.
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3. (a) How much work is done on the steam when 1.00 mol of water at 100°C
boils and becomes 1.00 mol of steam at 100°C at 1.00 atm pressure? Assume
the steam to behave as an ideal gas. (b) Determine the change in internal
energy of the system of the water and steam as the water vaporizes.

4. One mole of an ideal gas does 3000 J of work on its surroundings as it
expands isothermally to a final pressure of 1.00 atm and volume of 25.0 L.
Determine (a) the initial volume and (b) the temperature of the gas.

P
5. An ideal gas initially at Pi, Vi, and Ti is taken B C
through a cycle as shown in the Figure. (a) 3P -
Find the net work done on the gas per cycle
for 1.00 mol of gas initially at 0°C. (b) What
is the net energy added by heat to the gas
per cycle? pl 5
I
v v, "

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 16
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6. In the Figure, the change in internal energy of a
gas that is taken from A to C along the blue path P
iIs +800 J. The work done on the gas along the A B
red path ABC is -500 J. (a) How much energy
must be added to the system by heat as it goes
from A through B to C? (b) If the pressure at
point A is five times that of point C, what is the
work done on the system in going from C to D?
(c) What is the energy exchanged with the
surroundings by heat as the gas goes from C to
A along the green path? (d) If the change in
internal energy in going from point D to point A D C
is +500 J, how much energy must be added to Vv
the system by heat as it goes from point C to
point D?
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Energy Transfer Mechanisms in
Thermal Processes
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Unit 2: Heat and the first law of thermodynamics

Lecture 10: Energy Transfer Mechanisms in Thermal Processes

Unit 2: Heat and the first law of thermodynamics
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Heat Transfer

= The heat is a transfer of the energy from a Conduction
high temperature object to a lower
temperature one. Heat transfer changes the
internal energy of both systems

= Heat can be transferred by three ways:

Qdiation

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 3

Heat conduction

Conduction is heat transfer by means of molecular agitation within a material without
any motion of the material as a whole.

(S

S——

Conduction is the transfer of heat within a substance, molecule by molecule.

If you put one end of a metal rod over a fire, that end will oooo

absorb the energy from the flame. The molecules at this

end of the rod will gain energy and begin to vibrate faster. oooo

As they do their temperature increases and they begin to

bump into the molecules next to them. The heat is being l“.%QQQ
transferred from the warm end to the cold end. THEAT  ©www.gcse.com

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net A



10/16/2016

Iy o‘oh"n'lls,loh‘.w‘"d-xr
teamln

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net

Heat conduction

Conduction — when two objects are in physical contact.

Cross-sectional area = A
'
'
'
Heat flow ‘ i ......
L

H = rate of conduction heat transfer (Watt)
k =thermal conductivity (W/m.K)

H = 9 —k AT Q = heat transferred

t |_ A =cross sectional area
t =duration of heat transfer
L =length

AT = temperature difference between two ends
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The thermal conductivity coefficient

Substance (W m=2K?) Substance (W m2K%)

Silver 427 Ice 2
Copper 397 Water 0.6
Aluminum 238 Wood 0.08
Gold 314 Air 0.023
Concrete 0.8 Hydrogen 0.1
Glass 0.8 Helium 0.138

Why metals are good conductors? Find the answer in your reference book!

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 7

Example 1

An aluminum pot contains water that is kept steadily boiling (100°C). The bottom
surface of the pot, which is 12 mm thick and 1.5x10* mm? in area, is maintained at
a temperature of 102°C by an electric heating unit. Find the rate at which heat is
transferred through the bottom surface. Compare this with a copper based pot.

T=12mm

Base of pot Ty \ A= area of base
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Solution
AT
H =kA —
L
= For the aluminum base: T,; =102 °C, T =100 °C, L=12 mm =0.012 m, K, =
238 Wm-K-1, Base area A = 1.5x10* mm? = 0.015 m?.

H,, =238(0.015) 102 =100) _ggqy
0.012

= For the copper base K., =397 Wm-1K-1.

H =397 (0.015) 2927190 _ 1503
cu 0.012
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Heat Convection

= Convection is heat transfer by mass
motion of a fluid such as air or water
when the heated fluid is caused to
move away from the source of heat,
carrying energy with it.

= Convection above a hot surface occurs
because hot air expands, becomes less
dense, and rises. Hot water is likewise
less dense than cold water and rises,
causing convection currents which
transport energy.
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then density decreases,
making it bucyant.

_m
*/;' Vi
= constant

tV
pT

If the ternperature
of a given mass of
air increases, the

warm air

nses

cooler air drops
and replaces the

warmer air

heater

= | ==

ldeal gas law for
constant pressure

nA
FI

= constant

volume must increase
by the same factar.
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-
Hot water baseboard
heating unit
{a)

Convection
current

(b

Q: In the living room, the heating unit is placed in the floor but the refrigerator has a top-mounted cooling coil. Why?

A: Air warmed by the baseboard heating unit is pushed to the top of the room by the cooler and denser air. Air cooled

by the cooling coil sinks to the bottom of the refrigerator.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net



10/16/2016

Heat Radiation

= Energy is transferred by electromagnetic radiation. All of the earth's energy is
transferred from the Sun by radiation.

Convection

* Our bodies radiate electromagnetic '

waves in a part of the spectrum that we

can't see called the infra-red. However,

there are some cameras that can actually
see this radiation.

Radiation

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net

Heat Radiation

» The color and texture of different surfaces
determines how well they absorb the radiation.

(1) Black objects absorb more radiation than white

objects.

Temperature Temperature
(2) Matt and rough surfaces absorb more than shiny rises rises
and smooth surfaces. rapidly slowly

f

Lampblack-coated Silver-coated
block block
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Heat Radiation

The relationship governing radiation from hot objects is called the Stefan-Boltzmann Law:
P=ecA(T*-T{)
S

P is the net radiated power measured in Watt,

e is the emissivity (=1 for ideal radiator),

A is the radiation area in m?,

T is the temperature of the radiator in Kelvin,

T, is the temperature of the surroundings in Kelvin,

o = 5.67x10% Watt/m? K+ is a constant called Stefan-Boltzmann constant.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 15

Example 2

= A student tries to decide what to wear is staying in a room that is at 20°C. If
the skin temperature is 37°C, how much heat is lost from the body in
10 minutes? Assume that the emissivity of the body is 0.9 and the surface
area of the student is 1.5 m2.

Solution
= Using the Stefan-Boltzmann's law

P.=ecA(T*-T")=(5.67x10"°)(0.9)(1.5)(310* — 293*) =143watt.

= The total energy lost during 10 minis

Q=P At =143x600=285.8 kJ

net

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 16
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Problem to solve by yourself

1. A glass windowpane in a home is 0.620 cm thick and has dimensions of
1.00 m x 2.00 m. On a certain day, the temperature of the interior surface
of the glass is 25.0°C and the exterior surface temperature is 0°C. (a)
What is the rate at which energy is transferred by heat through the glass?
(b) How much energy is transferred through the window in one day,
assuming the temperatures on the sur- faces remain constant?

2. The surface of the Sun has a temperature of about 5 800 K. The radius of
the Sun is 6.96 x 108 m. Calculate the total energy radiated by the Sun
each second. Assume the emissivity of the Sun is 0.986.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net At/
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The kinetic theory of gases
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Unit 3: The kinetic theory of gases and the Equation of state
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Unit 3: The kinetic theory of gases and the Equation of state

O Molecular Model of an Ideal Gas
O Pressure and Kinetic Energy
O Molecular Interpretation of Temperature
O Equation of state of an ideal and real gas
O Molar Specific Heat of an Ideal Gas
O Adiabatic Processes for an Ideal Gas
O PVT surfaces for a an ideal and real gas

O Phase diagrams, Triple point, critical point
and Vapor pressure.
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Macroscopic vs. Macroscopic Descriptions

= Sofar we have dealt with macroscopic variables:
» Pressure
= Volume

= Temperature

= These can be related to a description on a microscopic level.
= Matter is treated as a collection of molecules.

= Applying Newton'’s laws of motion in a statistical manner to a collection of particles
provides a reasonable description of thermodynamic processes.

= Pressure and temperature relate directly to molecular motion in a sample of gas.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 3

Ideal Gas Assumptions

O The number of molecules in the gas is large, and the average separation between the
molecules is large compared with their dimensions. The molecules occupy a negligible
volume within the container.

O The molecules obey Newton'’s laws of motion, but as a whole they move randomly, i.e.
any molecule can move in any direction with any speed.

O The molecules interact only by short-range forces during elastic collisions.

O The molecules make elastic collisions with the walls. These collisions lead to the
macroscopic pressure on the walls of the container.

O The gas under consideration is a pure substance. i.e. all molecules are identical.
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Pressure and

Kinetic Energy
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Pressure and Kinetic Energy

To relate the macroscope variable of pressure P to One molectle of the g2
microscopic quantities. moves with velocity ¥ on

its way toward a collision
= Consider a collection of N molecules of an ideal gas in a with the wall.

container of volume V.

= Assume the container is a cube with edges are length d

= Look at the motion of the molecule in terms of its “»

velocity components.

= Look atits momentum and the average force. f

I
=
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Pressure and Kinetic Energy, 2

= Assume perfectly elastic collisions with the Coltision 31/35
walls of the container. é ’ "'°'°°“"’a“
» The molecule’s velocity component é// T
perpendicular to the wall is reversed, -
because the mass of the wall is much \€) Playback speed
greater than the mass of the molecule. ) & P 0 .
= The molecule is modeled as a non-isolated 1 o (‘é 7 Show moesemton vectors
system for which the impulse from the wall EAShow component vector
causes a change in the molecule’s b
momentum. Number of Total number )
molecules of collisions shuffle
[ I IQI [ E’ | Q L I B | = ) )
12345678910 20 40 60 S0 100 run reset
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Pressure and Kinetic Energy, 3

= The momentum component p,; of the molecule is m_v,;
before the collision and -m,v,; after the collision, the change

in the x component of the momentum of the molecule is

Ap,; = —mgu,; — (Myu,,) = —2myv,,
The molecule’s x b
= Because the molecules obey Newton’s laws, we can apply component of L
the impulse-momentum theorem EOMIERI SR o /]
Av whereas its y component P4
F=ma > F =m T > Ft = mAv remains unchanged. //

Impulse = Change in momentum

F At = Api = —2mgvy

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 8



The time interval between two collisions with the same wall is

At

2d

Ui

2myv

_ 2myv .2
= 0Yxi
F=- —

At °0d

2d is the distance for the molecule to make anoth:
collision with the same wall after this first collision

Tmv ®
The average force exerted by the wall on the molecule

Mo ;2

d

) d
The average force exerted by the molecule on the wall

2

5 S MUy

F. = - = —
i,on wall i d

The total average force F exerted by the gas on the wall

N

2

— MUy

F = E -
i=1

m N
d

9 For very large no. of molecules the
B = Uxi constant force F on the wall is
=

10/16/2016
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The average of values of the square of the x component velocity v_,f is

= One molecule with velocity components

= Because the motion is completely random v = 3y 2

o Mo N
=— > v
d &~ ¥ | thesumofthe v2; over the number of molecules N:
N
'Uxiz
o _ =1
Uy — 7]\;
L my
F=—Nuv?
d

VyirVyiand v,

2 — 2 2 2
VS = U, + vyi + U, and

Mmyv>
F=1IN
=1

v = vz + vf + vf
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= The total pressure exerted on the wall of the container.

F F mov> N -

e

= This equation also relates the macroscopic quantity of pressure 488
with a microscopic quantity of the average value of the square '
of the molecular speed.

= The relationship is

= This equation tells us that pressure is proportional to :
= the number of molecules per unit volume (N/V)

= the average translational kinetic energy of the molecules

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net
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Molecular Interpretation &

of Temperature
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Molecular Interpretation of Temperature

= We can take the pressure as it relates to the kinetic energy and compare it to the
pressure from the equation of state for an ideal gas.

2
PV=EN
4

‘I —_—
Emv2)=NkBT

= Therefore, the temperature is a direct measure of the average molecular kinetic energy
1 = 3
Emov"' =EkBT

= Simplifying the equation relating temperature and kinetic energy gives

2
T = (5mqyv?)
3ky
Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 13

Molecular Interpretation of Temperature

= This can be applied to each direction,

1 2 _ 1y o 1 2 _ 1y 1 2 _ 1y -
MoV, = skyl gMgv, = gkl smyv, = skyT

= Each translational degree of freedom contributes an equal amount to the energy of
the gas, V2 kg T.

= A generalization of this result is called the theorem of equipartition of energy
theorem of equipartition of energy: Each degree of freedom contributes Y4k T to the

energy of a system, where possible degrees of freedom are those associated with
translation, rotation and vibration of molecules.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 14
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Total Kinetic Energy

The total kinetic energy is just N times the kinetic energy of each molecule.

1 =) 3 3
Koo = N(Emvz) = SNKT = ZnRT

If we have a gas with only translational energy, this is the internal energy of the gas.

This tells us that the internal energy of an ideal gas depends only on the temperature.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 15

Root Mean Square Speed

The root mean square (rms) speed is the square root of the average of the squares of

the speeds (v2).
peeds (v?) . skt
movzzikBT Ve =

N =

me

V.= £= ﬂ M is the molar mass and M =m, N,
e m, M

At a given temperature, lighter molecules move faster than do heavier molecules.

Solving for v, we find

For example, hydrogen molecules, whose molar mass is 2.02 x 103 kg/mol, have an
average speed four times that of oxygen molecules, whose molar mass is 32.0 x 1073
kg/mol.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 16
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10/16/2016

Molar Mass Vs Molar Mass Vs
Gas (g/mol) at 20°C (m/s) Gas (g/mol) at 20°C (m/s)
H, 2.02 1902 NO 30.0 494
He 4.00 1352 O, 32.0 478
H,O 18.0 637 CO, 44.0 408
Ne 20.2 602 SO, 64.1 338
N, or CO 98.0 511
Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net At/
Example 1

= A tank used for filling helium balloons has a volume of 0.300 m3 and contains
2.00 mol of helium gas at 20.0°C. Assume the helium behaves like an ideal gas.

* (A) What is the total translational kinetic energy of the gas molecules?
Koot wans = 3nRT = 3(2.00 mol)(8.31 J/mol - K)(293 K)
= 7.30 X 10*]
= (B) What is the average kinetic energy per molecule?

smov® = 3hy T = 3(1.38 X 1072 J/K)(293 K)
= 6.07 X 1072
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Quiz

= Two containers hold an ideal gas at the same temperature and pressure. Both
containers hold the same type of gas, but container B has twice the volume of
containerA.

= (i) What is the average translational kinetic energy per molecule in container B?
(a) twice that of container A
(b) the same as that of container A
(c) half that of container A

d) impossible to determine

= (ii) From the same choices, describe the internal energy of the gas in container B.

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 19

Problem to solve by yourself

1. Acylinder contains a mixture of helium and argon gas in equilibrium at 150°C.
(a) What is the average kinetic energy for each type of gas molecule? (b)
What is the rms speed of each type of molecule?

2. A spherical balloon of volume 4.00 x 103 cm?3 contains helium at a pressure of
1.20 x 10° Pa. How many moles of helium are in the balloon if the average
kinetic energy of the helium atoms is 3.60 x 1022 J?

3. (a) How many atoms of helium gas fill a spherical balloon of diameter 30.0 cm
at 20.0°C and 1.00 atm? (b) What is the average kinetic energy of the helium
atoms? (c) What is the rms speed of the helium atoms?

4. The rms speed of an oxygen molecule (O ) in a container 2 of oxygen gas is
625 m/s. What is the temperature of the gas?

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 20
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Unit 3: The kinetic theory of gases and the Equation of state

Lecture 12: Equation of state and Molar Specific Heat of an Ideal Gas

Unit 3: The kinetic theory of gases and the Equation of state

0O Molecular Model of an Ideal Gas
O Pressure and Kinetic Energy
O Molecular Interpretation of Temperature

O Equation of state of an ideal and real gas
O Molar Specific Heat of an Ideal Gas

O Adiabatic Processes for an Ideal Gas

O PVT surfaces for a an ideal and real gas

O Phase diagrams, Triple point, critical point
and Vapor pressure.
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Summary

Heat, Q Is an amount of energy that is supplied to or removed from a Sulings

system. This will lead to a change in one or more of the thermodynamic
parameters of the system e.g. the temperature, T, the volume, V, the System
pressure, P.

Work, W When a system has work done on it, or if it does work itself, then

Work Heat
there is a flow of energy either into or out of the system. This will also lead to ——
a change in one or more of the thermodynamics parameters of the system in "
the same way that gaining or losing heat, Q. Surroundings
Internal energy, E;,; The internal energy of a system is a measure of the

System

total energy of the system. However, this is not possible, what we can do is
to measure a change in the internal energy by recording the amount of / \
energy either entering or leaving a system.

AE,,,=Q+W

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 3

Work Heat

Molar Specific Heat of an Ideal Gas For the consanevolume

path, all the energy input
goes into increasing the

= The energy required to raise the temperature of one mole of internal energy of the gas
gas from i to f depends on the path taken between the initial ~ p because noworkis done.
and final states.

= The PV diagram showing an isovolumetric process and an
isobaric process that connect the same two isotherms.

= The energy transfer for the two processes can be written as

Isotherms

T+ AT

Q = nCy AT (constant volume) T

Q = nCp AT (constant pressure) v

Along the constant-pressure

where is C, the molar specific heat at constant volume and Cp path, part of the energy
is the molar specific heat at constant pressure. transferred in by heat is

transferred out by work.
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Equation of state

= A thermodynamic system is one which can be described in terms of the
thermodynamic co-ordinates. The co-ordinates of a thermodynamic system can be
specified by any pair of quantities such as, pressure (P), volume (V), temperature (f).

= The internal energy of a system is a single valued function of the state variable P, V,T.
E=f(PV,T)

= We can define the state of a gas using any two of the variables P,V, T.
E=fPV)or E=fWV,T) or E=f(PT)

padlaodl yam (sle Jazmid (T,V) &l JUs o a8lbll Asleo slub iiSs Bgw brolxall 040 (50
sl go aslall asleo a8Me Lwyni ol Ll Siie cliSoy oS ol Kaolyl ple s apwluwll

Ups 3 eoosall 140 Js Ulbuw smis Lz i il 0,500 iy sy o i
8,0
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T and, V Independent (Specific Heat of a Gas)

If T andV are chosen to be independent variables then,

E=fWV,T) (2)
Differentiating the equation we get
OE OE
(2= — (2)
a2 (%) ar+ (%) av
If an amount of heat dQ is supplied to a thermodynamical system, say an ideal gas and if the

volume increased by dV at a constant pressure P, then according to the first law of
thermodynamics dE = dQ + dW

dQ = dE — dW and dw = —PdV
dQ = dE + PdV

dQ = BN ar+ (%) av s pav @
ar), ).
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Dividing equation (3) by dT
dQ JoE 0E\ dV dv
— == +|==) =+P—
dT or), \ov/ dT dr

d_o_(a_E) [ (6_E) av @)
dr _\ar +LP+ av) |ar

|4
From equation (4) we can conclude the following:

Special case (1) Isochoric (isovolumetric ) process: when the system heated at constant volume

In this case dV = 0 then equation (4) become

dQ) (aE)
— | =|==] =¢C (5)
(dT , \ar), "

85> a5 83,0 &osWI 8,3l &S laio il (ske Tl e csill lyadl dsud) ua> pgpin iy lidg
150 @8Ul Wsleo oy el Wed e byl ymedl @) didl 8,h2l @uoS xd il Lol of @gio @5 d3lodl
8oLyl @5 58 weil) @il 8slol) adslall aslall 5o uadl Sslus pexsdl wes die &l dsdl Ol
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Special case (2) Isobaric process: when the system heated at constant pressure

In this case dP = 0 then equation (4) become

dQ) (6E) (E)E) av (
=~ == —_) |= 4)
(dT ar) T|1Ft\av) |ar
P |4 L 1]
(%) =Cp And from equation (5) <g—i> = 0y
P |4
Cp=Cy+|P+ 9E v
P av ). |dr
J0E av
—C = =) 12 (6)
Cr—Cv [P * (av)u dT

oSos sl Bylll (58 wloSlly sl @sleo oo waws (6) @slaall oo ool Wkl b wlastl JS ol s\
(au,=L) Lloc sl
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dW =0 & dQ =0, therefore dE =0

OE\ |dV
L

6V dT

Wl gzl Lsle (6) &sleo auaig yaall L,SLM owau (6) @slaall (s (aE) el ol s

cr—c,=p(Y 7)
P~ Ly — ﬁp

slall @ldl @slee JUs oo s oo ol oSovs R wlilall plall coldl ¢a @slaadl oo ooVl bl
:a Wl aolpdl @Ml (sle Lo 31 ol

Cp—Cy=R

99 ol )|.Lo.o tSQLuU pa.z” Wod Jic CUJ|_,>J| q.Q.u.L”Q beoll Wl Aic CU)|)>J| Al [GTY) d)_c.” u| v.5|
wsdlio 5LE SV € o ST € Ol i Wl wago lado R O s R wllall slall coli
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Special case (3) Isothermal process: when the system heated at constant temperature

o w155 ol Olloall Al (8d udenid 3979 &0 81,2l &)y o tie g il &dasll Of Tl Lale
a>,5 UeSi Ldg e J| Jladl Jo=i ol Jilbw (] wlall Joxi Jio )3l (8] 8y90 0 85Lodl Jg=i
(3) Wslaoll (28 Usseiw aulslul @lall Gam I3lo ppaly olaill 8)l,> g Lold cro peJb aul 8,1,

rool Lo sle Lo dT = 0 o0

dQ = (g—i> dT + (gi) dv + Pdv (3)

(a;s) i p
).
ode Joms 8Ll @S oo £33 0ld 8Ll @y wes Wls (s dQ 8l @oS (s sl Ol o lis

Jeidl 1isg Joi Jiw 8,15l oS oo 55Vl 53l psel) &nidl @lgiall 83lal) dulslal aslall 83L;
Syl @5 (58 8505 Tk V el Ligdg d3lodl @liz> o @8lunodl 85030 ST

ol &l a4V Ssbus sV 8Ll a>,5 wed dic @zl sl e sl glics V @sleall Ol oS =
Il 3955 85> dxeS sl OV asles V &)zl disw olS o) WS Bran 8,12l &) wed @l o plall
s> ax)> 89, | Sx85 ) elaill

dQ = av (8)
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Special case (4) Adiabatic process: when dQ = 0

855l Gy Ol oS U8 Jgseo plaid Sz 8yl @uaS e vic pi wsill (b aSlusVl alas
ole Jas (4) @slaoll (08 s oo Lavg=ills dQ = 0 of Jgss sJllg @] 5l aio

dQ (GE) [ (GE) ldV (
(= — ) |—= 4)
ar ~\ar) *|"*\av) |ar
4 L 1
0=cy+|p+(2) | %
B av), |dr
CydT = — (P + oF av
e av
T
aT JE
— | =—|p — (9)
Cv (av) [ +<av)
T
Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net i

ey beall weg die (ol 330l Joloo 0B adeg AV = B V;AT 0l plai )12l sa0il @lle (0

ra ] adMell
_L(ov therefore V= v
F=y\ar), Fv=\ar),
0E av i
—C, = — hid 6) asleoll ¢
Cr—Cv [P“L(aV) l(aT) & o
L Ji | P

—CP_CV= P+ a_E wle Jaxs

BV av

T
sic sl @il alsll @lall b el VeSy Jgjmo pla (sd (sllin 5l sl pis dulac @l> (589
(g—i)T = 0 Ul Sl ;00 Sl 6),=l a>,> weus
Cp—Cy asMall sle Jass (sl
e ———— P
pV
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e daxi (9) dslzoll 28 pasg=illy =

(9)

SVl adosl) asa=sio @sleoll 0idg =
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Experimental determination of heat capacities

(1) For all gases (3) For diatomic gases (H,, O,, N,, NO, CO,
C, is a function of T Air,....)

C,is a function of T C, = 5/2 R for ordinary temperature and increase

as the temperature raised
C, - C,=Constant=R .

: ' ' C, = 7/2 R for ordinary temperature and
y = G,/C,is afunction of Tand y >1 increase as the temperature raised

y=7/5 forordinary temperature and decrease
as the temperature raised

(2) For mono-atomic gases (He, Ne, A, ....)

C, =3/2 R for wid ft t .
v=3/2 Rforwide range of temperature (4) For polyatomic gases (NH,, CH,, Cl,,
C, = 5/2 R for wide range of temperature coO )
. 2/
v=5/3 forwide range of temperature C,, G, and y vary with temperature and the
variation being different for each gas
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Problem to solve by yourself

Using the same principle for E = f(T, V) find similar relation for

(D E=f(PV)
(2)E = f(P,T)

using partial differential equation. Hint: use the coefficient of compressibility (k) at

constant pressure
- 1(av>
V\aoP T
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Adiabatic Processes
for an Ideal Gas
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Unit 3: The kinetic theory of gases and the Equation of state
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0O Molecular Model of an Ideal Gas
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Adiabatic Processes for an Ideal Gas

= An adiabatic process is one in which no energy is
transferred by heat between a system and its
surroundings.
= For example, if a gas is compressed (or expanded)

rapidly, very little energy is transferred out of (or into)
the system by heat, so the process is nearly adiabatic.

= Another example of an adiabatic process is the slow
expansion of a gas that is thermally insulated from its
surroundings.

= All three variables in the ideal gas law (P, V, T)

can change during an adiabatic process. Boise 2oy Ju oo slopll ol

2 ) olas gy assall Julas |_b.|9

= Assume an ideal gas is in an equilibrium state 151 ‘J-" ol (58 a0 O "%U
and so PV = nRT is valid. Sl 9a g 839, wye
sSwilusVi
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Gas equation during adiabatic process

= Let's imagine an adiabatic gas process involving an infinitesimal change in volume dV
and an accompanying infinitesimal change in temperature dT.

We slowly remove lead shot, allowing an Fig. 19-15 ((.r) Thl:.' \.i‘C.l-
expansion without any heat transfer. . L.
ume of an ideal gas is in-
-0 creased by removing mass

from the piston. The process
is adiabatic (Q = 0).(b) The

Isotherms:

K Process pl oceedsfromito f

*% along an adiabat on a p-V
Volume .
0 diagram.
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Gas equation during adiabatic process

= From the first law of thermodynamics

dE = dQ + dW
For adiabatic process dQ = 0 ~dQ=dE—-dW =0
Therefore dE = dW

wdE = CydT & dW = —PdV

—PdV
Therefore dT =
Cy
L] L] L] L] dT _PdV
Gas equation during adiabatic process ¢
: . . : Cp—Cy=R
By differentiating the equation of an ideal gas PV = RT we get
c
PdV + VdP = RdT Vap = — PC—PdV
4
—Pdv
PdV + VdP=R e Tl Let 2 —
— = et L=y
v PCc,V cv
—Pdv
PdV + VdP=(Cp — C,) LY o
4 P v
Cp—C
PdV + VdP =¥ (—Pdv) LnP + LnVY = constant
14
B PVY = constant
PdV + VdP=— P> dV +PdV
v by sl &Silus] adoc (s (sdliodl slell @l dsles oing
aSilosl alac <l pxdly bhaall
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Example 1

= Air in the cylinder of a diesel engine at 20°C is compressed adiabatically from
an initial pressure of 1 atm and volume of 800 cm?® to volume of 60 cm3.

Assuming that air behaves as an ideal gas with y=1.4. Find the final pressure
and temperature.

v

v

800 cm?

1.4
W) = 37.6 atm

P, = 1atm<

» From ideal gas equation PV = nRT

PV, PV,
T, T,
P,V, 37.6 X 60 )
T, = = 293 = 826K = 553 °C

=T, =—""" """
Py, b 1 x 800
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The work done in adiabatic process

To find the work done during adiabatic process, we use the general equation of the

work 1 =
Kv, Y — kv
w = deV WwW=—2 1
1-y
K
— p-£ .
744 PZVZVVZ Y _ P1[/1YV1 Y
VZ W =
_ av 1-y
W=K 7T
121
PV, — P11y
W=K i W=—
= T Y
) PV =PV =K —— aSilusl adoc JMS Jgiuoll Jeuidl @sles 0idg
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Example 2

By using these relation PVY = K where K is constant, and from the ideal gas equation
PV = nRT Prove that

-1 -1
T,VY =TV}

= Solution
nRT
From PV =PV and  p=—1
vV
nRT, VY = nRT; VY
2 1
V2 Vi
y—-1 _ y—1
Example 3

= By using these relation PVY = K where K is constant, and from the ideal gas equation
PV = nRT Prove that 157 1-y

PYT,=P'T,

1-y
P2VZy — Plvl'y V= nRT i
P,

14 A=y
= (&) L P. 1 4 =i T2
Tl " P. 2 - Tl

1y
7" - &)
(AY 7\ T P, T,
PZ(Pi) =P1<P_1> 1—yLn<—) =yL (T_z)
1
1y 1y
- - 1- P T. Yr,=pP7
P21 ]/TZY _P11 ]/Tll/ yYL <P_1) . <T_2> PZ Tz P1 T1
2 1
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Example 4

One gram molecule of a monoatomic ideal gas at 21°C is compressed adiabatically

from an initial pressure of 1 atm to a final pressure of 50 atm. Calculate the
different in temperature.

We have
= A=y
P, =1atm P\ 7 T, 5 .
P, =50 atm S — (22 y = > for monoatomic gas
T, = 273 + 27 = 300K 2 Ty
TZ =? 1-y

1\7 (T,

50 ~ \300
1=y, (1) _ (T
y 50) T "\300

(—0.4)x(=39) = InT,—In300 ~ 1.65= InT,-57 =~ W[, =73 T,=1480K
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Summe ry PVY = constant

T VvV 1= constant
Equations for adiabatic /
process

= constant

Work done on isothermal
process
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Problem to solve by yourself

» A motor car tire has a pressure of 2 atm at 27°C. If the tire suddenly bursts, find
the resulting temperature.

= A quantity of air at 27°C and atmosphere pressure is suddenly compressed to
half its original volume. Find the final (i) pressure and (ii) temperature.

= Air is compressed adiabatically to half of its volume. Calculate the change in its
temperature.
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PVT surfaces for a an ideal
and real gas
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Kinetic Theory — Summary

Using Newtonian mechanics we have established:

= the relationship between pressure and K.E; P = %(%)( 1 m 7)

= the universality of the gas constant; R=Cp—Cy

. . 2 —
= the relationship between temperature and K.E; 7 = g(%movg)
B

1}3 3

« the internal energy of an ideal gas. Kotvans =N (Emvz = 5NlT =5nRT
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m aliSllg T 8,2l a>,59 P bheall (sde doizy d3lodl o d5a=0 aiS p=> Ul usy 1ddg0
.Equation of State =)l @sleo (swoeusi oo pplayyi sl @sleolly

d3lol) &)yl dx)59 pxelly basall ¢ @Ml wasd Al> @Wsleo skl Lsall oo 1@a>Mo0
Al Ll o8 sl liedl el Wl @sles csde oMoasidl yas chy>b pgsiw 13 (@8
PVT Jl adoasl Gyt o3 sl @slas (sde J,0

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net A



11/3/2016

Real Gases General Observations

ODeviations from ideal gas law are particularly
important at high pressures and low temperatures.

OReal gases differ from ideal gases in that there can
be interactions between molecules in the gas state

ORepulsive forces important only when molecules
are nearly in contact, i.e. very high pressures.

OAttractive forces operate at relatively long range
(several molecular diameters).

OAt low pressures, neither repulsive or attractive
forces dominate — ideal behavior

J. van der Waals, 1837-1923,
Professor of Physics,
Amsterdam. Nobel Prize 1910.
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Real Gases General Observations

OThe Ideal Gas Law ignores both the volume occupied by
the molecules of a gas and all interactions between
molecules, whether attractive or repulsive.

Q In reality, all gases have a volume and the molecules of
real gases interact with one another.

O For an ideal gas, a plot of PV /nRT versus P gives a
horizontal line with an intercept of 1 on the PV/nRT axis.

QO The reasons for the deviations from ideality are:

O The molecules are very close to one another, thus
their volume is important.

O The molecular interactions also become important.

2.0
—173.K
298 K
—873K
1.5+
~
o
S
o>_ Ideal gas

10 === f-------dmeme-.

05 T T T 1
0 200 400 600 800 1000
Pressure (atm)
Real gases behave ideally at ordinary
temperatures and pressures. At low
temperatures and high pressures real
gases do not behave ideally.
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Real Gases Van Der Waals Equation

Real gases do not follow PV = nRT perfectly. The van der

. o 2, 2
Waals equation corrects for the non-ideal nature of real Gas | @ (Lratmi/mor) | b (H/mel)

gases. He 0.03410 0.0238
nza Ne 0.205 0.0167
P+ vz (V—nb) = nRT Ar 1337  0.032
Ha 0.2420 0.0265
. . N2 1.352 0.0387
a corrects for interaction between atoms.
0, 1.364 0.0319
b corrects for volume occupied by atoms. o c260] 0,042
NH3 4170| 0.0371
Non-ideal Conditions when gas gets close to conditions where |- 2273 00430
it will liquefy i.e. Lower Temperature and Higher Pressure
CO,y 3.610 0.0429
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Example 1

A 4.0 L cylinder containing 500 g of chlorine. The cylinder can handle a pressure of
40 atm safely. Use both the ideal gas law and the van der Waals equation to
calculate the pressure in a cylinder at 25°C. The molar mass of chlorine is 70.906
g/mol. Is this cylinder likely to be safe?

L mol ) = 7.05 mole

Solution: the no. of moles we have is 500g (W

Using the ideal gas law and the temperature in kelvins (298 K), we calculate the pressure:

nRT _ (7.05 ool ) [0.08206 (¥ - atm)/ ( K - ol )| (298 X)) 4
v 40 ¥ -

P = 3 atm

If chlorine behaves like an ideal gas, you have a real problem!
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= Now let’s use the van der Waals equation with the a and b values for Cl, from table in
slide 6 and from van der Waals equation

na
P+W (V —nb) = nRT

= Solving for P gives
g g nRT n?a

P=vy—np 1
(1,05 ol )(0.08206 . -atm/ K - gl ) (298 K) (6-2602 Xt gl 2)(7-05 ool )’
4.0 ¥ —~(7.05 yeol )(0.0542 ¥/ acl) 40 XY

=47.7 atm — 19.4 atm = 28 atm
= This pressure is well within the safety limits of the cylinder.

= The ideal gas law predicts a pressure 15 atm higher than that of the van der Waals
equation.
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Exercise

» A10.0 L cylinder contains 500 g of methane (with molar mass is 16.04 g/mol).
Calculate its pressure at 27°C using the

a) ideal gas law.

b) van der Waals equation.

Answer: a. 77 atm;

b. 67 atm
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P V T surfaces

Ideal gas van der Waals gas

isobar \ -- isobar

Pressure p
Pressure p
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PVT surfaces

> We consider a fixed amount of a real gas. The thermodynamic variables are P,V andT.

> Equations such as that for an ideal gas or the van der Waals equation, describe the
system over a limited range of these variables, but no single equation is adequate for
extended regions.

> Thus, P-V-T data are often given in tables. However a convenient way to visualize the
datais with a PVT surface.

> A cartesian coordinate system with P, V and T as the axes is used to represent the
system.
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PV diagram for Isothermal of Ideal and Real gas

100, : : Fi fsatherms
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PVT Surfaces for Ideal Gas
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PVT Surfaces for Ideal Gas

r fsobars

P = Constant
|

| Teotherms
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Temperay

£
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B Volume o F /
o o Tsovalntes
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\.,"

o

Boyvle's Law
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PVT Surfaces for Real Gas
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Phase Diagram

da>ly @l> Jios bhxoll 1is (sle ahss JS ol b>Wa
- 2>lgi Jioid pox VI wgllly wlixiodl sle bhaidl Lol 83lol)
) Oluizio oo Gluziodl 0idg .ésll) leo o>
: a>,59 heall pud >axi sallg Equilibrium Curves ujlgil
: Liquid Al 8 dslodl daic a=len Ol oSy sl 8,1l
el sl of alsludl sl of adall

Solid

Vaporization Curve 2l (sizwo @ Ujlgdl wls=ioO

Fusion lp.aiVl (siing aliludly ausle)l A=l o Jasy

sl (suzing aulally aliludl | ¢ Juasy Curve
adally a5l =l w Juagy Sublimation Curve

lovw Josall wes duie wldoce ¢ g a ahsiol bghzl JiosQ

&bl axy wed sie oldee Jini b g9 d bghl

2>V Ul Wlixinlly ansioll bghzll 0w gblaillg
WOl ansig ooVl dass saxs
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Triple Point aJMJI akadl

ahsill e &Ml Ujlgdl Oluxio gblei ans (aludl JSLadl 8 zuogo gd oS =
JSJg w8l Luas 59 S| sVl (o8 b5lall L@.u: 2>lgi _sallg Triple Point éus Ml
B9 as\ ahass dslo

Triple-point data P - .

Substance Temperature,  Pressure, : :
K 10° Pa i ]
Solid | i Liquid

Hydrogen (normal) 13.84 0.0704 :
Deuterium (normal) 18.63 0.171 i
Neon 24.57 0.432 i
Nitrogen 63.18 0.125 :
Oxygen 54.36 0.00152 -
Ammonia 195.40 0.0607 i
Carbon dioxide 216.55 5.17
Sulfur dioxide 197.68 0.00167
Water 273.16 0.00610 ¢ @ ®)
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Critical Point a>,=J| absill

V i wsadly 2l (uzio @l 09 UeSH sl spd Critical Point a> =)l alagill Lol =
&L=l az,n bac beally 8=l 4=, (vouwdy Slw ol Hldl o= Sy
2ol bheally a>,=Jl

p

Solid

Liquid
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aold wlay,2i
>, as 50l o S8l 65> ax s auce jlell g9 Vapor el =
wlall ol Lludl go wlsil @ls s axlginll Lzl hes ¢a Vapor Pressure Lzl bhes =

B> as)s @l ae

Soluw el s oaie 0sSy il 8,1l @555 @ Boiling Point wldell alai; «
.So=| henll

a>,5 e S)ly> ulpl Al 9 a>lgiodl Hldl ¢ Saturated Vapor gasiuoll [l =
Jludl go bo Jawog 8,l,>
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Problems Solving and Discussion
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Question1

If a gas is compressed isothermally, which of the following statements is true?
(a) Energy is transferred into the gas by heat.

b

c

d
e

~

No work is done on the gas.
The temperature of the gas increases.
The internal energy of the gas remains constant.

(
(
(
(

~ ~

None of those statements is true.
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Question 2

= When alcohol is rubbed on your body, it lowers your skin temperature. Explain this
effect on the basis of kinetic theory of the gas.

o 0ol o oS adlall ac ] wls Glismdl 01 JexSl 2t losic »
bl (8L ac,w bhwgio Jusi (de Josy l1a
30, y2inid 61,2l dss Uolazl Lsde clls LuSai »
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Exercise 1

(a) Find the number of moles in one cubic meter of an ideal gas at 20.0°C and

atmospheric pressure. (b) For air, Avogadro’s number of molecules has mass
28.9 g. Calculate the mass of one cubic meter of air.

@) PV =nRT

pv  (1013x10° Pa)L.00 m®)

i - [{T6 mol|
RT ~ (8314 J/mol-K)(293 K)
(b) m =nM = (41.6 mol)(28.9 g/mol)=
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Exercise 2

An automobile tire is inflated with air originally at 10.0°C and normal
atmospheric pressure. During the process, the air is compressed to 28.0% of its
original volume and the temperature is increased to 40.0°C. What is the tire
pressure?

Note that both temperature increase and volume decrease leads to increase the
pressure.

Taking PV = nRT in theinitial (i) ar P}Vf _ Tf ates, and dividing, we have

PV, T,
VT, v
Pf=P,.—f =(1.013><105Pa) f 2R +A00K ) _ 400 10° Pa
VT 0280V, ) 273K +100K
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Exercise 3

A 1.00-mol sample of hydrogen gas is warmed at constant pressure from 300 K
to 420 K. Calculate (a) the energy transferred to the gas by heat, (b) the increase
in its internal energy, and (c) the work done on the gas.

Al G gl vie i Adeal) () LS dlia go il Jan S A6l 5 caaaty Alad) o3a 8 cpa gyl ) JaaY

51l G e s el Lean€) ) 38U slay

Q = nC,AT

remember Cp =7/2R

Q = (1.00 mol)(28.8 J/mol - K)(120 K) = 3.46 k]
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Exercise 3, continue

g wlilell JSJ anlell adMell pasuiuws adslul a8lall (9 el sl =
AEint = TlCVAT remember Cy, =5/2R

AE,,, = (1.00mol)(20.4] /mol. K)(120K) = 2.45k]
a2l Saolual) JsVI wgiladl pasias sl (sde Jgiuodl Jsidl sl =
AE,, = Q + W

W =AE,, —Q= 245k — 3.46k] = —1.01kJ
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Exercise 4

(a) How many atoms of helium gas fill a spherical balloon of diameter 30.0 cm at 20.0°C
and 1.00 atm? (b) What is the average kinetic energy of the helium atoms? (c) What is
the rms speed of the helium atoms? (the molar mass of helium is 4.0026 g/mol).
Solution (a) The volume of the balloonis  y— 4 = 4 7(0.150 m)*= 1.41 x 102 m®

From the equation PV = nRT we can get the quantity or gas

py  (1013x10° N/m?)(141x10™ m?)
RT (8314N-m/mol-K)(293K)

= The number of molecules is
N =nN, = (0.588mol)(6.02 x 1023 molecules/mol)

n=

=0.588 mol

N = 3.54 x 1023 helium atoms
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Exercise 3, continue

(b) The kinetic energy is K==m,v" = ngT

_ 3
k=2 (138 102 J/K)(293 K) = 6.07 x 1021 J

(c) the root-mean-square speed is given by

m

aQ

M 4.002 6 g/mol

N, ~ 6.02 x 10® molecules/mol

= 2K [2x6.07x107]
v =N’ = |"—= %:1.351{@5
m, 6.65x107" kg

m,=

=6.65x10 g = 6.65x10" kg
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Exercise 4

» A 3.00-g lead bullet at 30.0°C is fired at a speed of 240 m/s into a large block of
ice at 0°C, in which it becomes embedded. What quantity of ice melts?

Solution: the energy lost by the bullet equals the energy gained by the ice
AI(b + Qb = Qice

1.2
- Am =mb(2vb +CPb|AT|]

1 2 _
Zmbvb + mbCPbIATl - LfAmmelted melt L

!

1 2 o .
Am, = (3_00 % 107 kg) 7(240 m/s)” + (128 Js/kg C)(30.0°C)
3.33x10° Jkg

864 +115]
333 x10° Jkg

=294x10"kg=0294 g
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Exercise 5

In an insulated vessel, 250 g of ice at 0°C is added to 600 g of water at 18.0°C. (a)
What is the final temperature of the system? (b) How much ice remains when
the system reaches equilibrium?

ol Sy oSl 0,ls5 Ol lude LAM Hlagou 8, oSy adid] Ol gus xd MCAT Jlsias 3 a ol S Jal)
YV ol JolSIb G adidl 0lS

(@) If all 250 g of ice is melted it must absorb energy
Q,=L,Am= (0250 kg)(3.33 x 10° J/kg) =833 kJ
(b) The energy released when 600 g of water cools from 18.0°C to 0°C
|Q| = [mcAT| = (0.600 kg)(4 186 J/kg-°C)(18.0°C) =452 kJ

A18°C e el (e gl 600 28 e Aadlill 5 jall (1 JS) 4y e st die &l (4o ol ja 250 LI3Y 43 AL ) Cus
.00C i 2Uaill Aslil) 5l all A 53 0y 5SEs Sl sy Y il G Ay siall ioall da
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Exercise 5, continue

» (b) How much ice remains when the system reaches equilibrium?

&@}45'21(]795}@23&”L')A‘)\JB.AOOCBJ“)A:\;)JL;J 18°C 3, a da 53 (e 2w Ladic clall 09 3 w
Q= LeAm A8kl s 2l il Loy Al

0 452 x 10°J
Am= % = =0.136k
T LT 333% 10° Jike .

(o Aial) Bl dpeS 0 S5 5

m =0250kg—-0.136 kg=0.114 kg
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Exercise 6

An ideal gas is enclosed in a cylinder with a movable piston on top of it. The
piston has a mass of 8,000 g and an area of 5.00 cm? and is free to slide up and
down, keeping the pressure of the gas constant.

How much work is done on the gas as the temperature of 0.200 mol of the gas is
raised from 20.0°C to 300°C?

Solution: For constant pressure W=— J..deV =—-PAV= —P(Vf— V)

nRT, nRT
W=-P| —t———<|=—nR(T,-T)
P P 2

=—(0.200 mol)(8.314 J/mol - K)(280 K) = —466 ]

oSl U3g b @l Blias Seal sl Ssluw Silly heall laie slul g )5l @i,k Sl oS
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Exercise 7

An ideal gas initially at Pi, Vi, and Ti is taken through a cycle as shown in the
Figure. (a) Find the net work done on the gas per cycle for 1.00 mol of gas
initially at 0°C. (b) What is the net energy added by heat to th% gas per cycle?

The work done during each step of the cycle equals the negative B C
of the area under that segment of the PV curve. 3P -

W =~P,(V, -3V,)+0-3P(3V, - V,)+ 0=[ 4PV, P

W =—4PV. = —4nRT, = —4(1.00)(8.314)(273) = [ —9.08 K] L Ly

(b) The initial and final values of T for the system are equal. Therefore, AE;; =0
Q=-W=| 4PV.

11
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More Problems Solving and
Discussion
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Part Two

Exercise 1

A glass window has an area of 3.00 m? and a thickness of 0.600 cm. If the
temperature difference between its faces is 25.0°C, what is the rate of energy
transfer by conduction through the window? (thermal conductivity of glass 0.800

W/me°Q) -
H = Q kA(A )

(0.800 W/m-°C)(3.00 m*)(25.0°C)
6.00x10 ° m

~1.00x10* W
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Exercise 2

A cylinder contains a mixture of helium and argon gas in equilibrium at 150°C. (a)
What is the average kinetic energy for each type of gas molecule? (b) What is the

rms speed of each type of molecule? (molar mass of He is 4.00 g/mol, molar mass
of Ar is 39.9 g/mol)

s bog) wlds=dl o puegdl MS 0L lale (Lgllaodl (e Jax Ul (Sou wl3lel aS =l a,lbll o
Byl ax)s de S JStin s @S =)l adllall oV &S =l aslall lowgio
-1 —= 3
v K = Emovz = EkBT

3
=3 (138 10 J/K) (273 + 150) K

K=876x1072']
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Exercise 2, continue

(b) The root-mean square velocity can be calculated from the kinetic energy:

__ ——  The masses of the molecules are
2
Urms = VUV 400 g/mol)(l‘{)’3 kg/g)
My, = 5 =6.64 %107 kg
—_ 1 — 602 x 10* atoms/mol
K= Emov
(399 g/mob (10" ke/e) 30k
1 m, = =0. X X
2K _ A7 602 x10% atoms/mol #
O )
2(876x10™ J) .
72 v =, ——=162x10°m/s
o —Joz= 2K =5\ 664 %107 ke
™ms mo

) 2(876x 107" J)

v, = ]—————L =514m/s
e AL 663x107 kg
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Exercise 3

A spherical balloon of volume 4.00x10° cm?® contains helium at a pressure of
1.20x10° Pa. How many moles of helium are in the balloon if the average kinetic
energy of each helium atom is 3.60x10722]J?
ol )3 A8 ja Al dan e (e el () (S g 8 padl Aa 50 et of Zliad Y sall dae alagy G L) Aalas aladiay
il il e 5 51 jal) a5 sl

m,v? = EkBT

N =

1, 2 22
T=2 s M, 0 =g M - 174K
3 kg 31138 x 107 /K

pv (120x10° N/m?)(400 %107 m?)

From PV = nRT gives n=-——
RT (8314 J/mol -K)(17 4 K)

=332 mol
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Exercise 4

A 2.00-mol sample of a diatomic ideal gas expands slowly and adiabatically from
a pressure of 5.00 atm and a volume of 12.0 L to a final volume of 30.0 L. (a) What
is the final pressure of the gas? (b) What are the initial and final temperatures?
Find (c) Q, (d) AE,,, and (e) W for the gas during this process.

Joiuoll Jeuidl ugSig 8,l,> pladl cowiSy V Sl a0 Solbws Q 8,1l @wS Ul aSlusVl adosll 0id o R3¢
.2atm e beall Js Llaly pas=isd é)l )=l a5 Gl sle

(a) In an adiabatic process PiVl_"z Pfoy

remember y = % = 1.40 for diatomic ideal gas,

Y
V 140
P=P|—| =(500 atm)(%) =1.39 atm
;Foo 300L
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Exercise 4, continue

(b) The initial temperature is

PV, (500 am)(1.013 x 10° Pa/am (120 x 10 °m’)

= =366 K
nR (2.00 mol)(8.314 N - m/mol K)

Tl_=

_ _ PV
the final temperature is T=-L71_2753K
7 nR

(c) This is an adiabatic process, so Q = 0
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Exercise 4, continue

(d) For any process,

AEint = HCVAT remember Cy = 5/2 R for diatomic ideal gas,

AE.

int

2 (2.00 mol)(8.314 J/mol -K)(253 K — 366 K) = —4 660 ]
2

(e) The work
W=AE_-Q=-46601—-0=-4660]

= The work done on the gas is negative, so positive work is done by the gas on its
environment as the gas expands.
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Exercise 5

Helium gas at atmospheric pressure and temperature of 273K is expanded
adiabatically from a 12-liter volume to a 33-liter volume. Find the final

temperature and pressure of the gas and the work done on the gas. (For helium, y
=1.67)

To find the final pressure, we 11se the relation
pV? = constant = p; V] = p, V7.

V) (101 X 10°Pa)(12¢)'¢
p =2t = ( 1)6(7 )7 186 % 10°Pa
Z (33¢6)"
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To find the final temperature, we use the relation

TV ™' = constant = T\V] ' = LV}~

T,V (273K)(12¢)%¢

T, = T = = 139K
oy (33 ¢)0%7
The work done by an ideal gas in an adiabatic process is
PV, —PVy
=1
(1.86 x 10%)(33 x 1073) — (1.03 x 10°)(12 x 1073)
W=
1-1.67
W=895]

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net




11/3/2016

(1\A) 3 palaal) aa elall) )

More Problems Solving and
Discussion




11/3/2016

jazem F

g

Part Three

Exercise 1

A long steel rod that is insulated to prevent heat loss
along its sides is in perfect thermal contact with a
large container of boiling water at one end and a 3.0- b Steel A

kg block of ice at the other. The steel rod is 1.2 m T=100" . ; T=0'
long with cross-sectional area 3.50 cm?. How lon 1.3
does it take for the block of ice to melt? The ice bloc \ -
is initially at 0°C and the thermal conductivity of :
steel is 50.2 W/m.K

Gal a5 51 all Joo sl Aslas w2305 23 (pay caBidY Ao DU 551 pall 408 i o Lide B Z03Y o300 a3l sl

The heat required to melt the ice is the heat of fusion for ice:

Omen = Mieel; = (3.0kg)(3.34 X 10°J[kg) = 1.0 X 10°]
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Exercise 1, continue

= The rate of heat flow is given by

o80T Tc
At L
(100°C) — (0°C)

=2TW
(1.2m)

= (502 W/(m-K))(6.5 x 107 m?)

= The time required to melt the ice is

_ chlt _ (106'[)
H  (27W)

At = 370,000 s
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Exercise 2

The surface of the Sun has a temperature of about 5800 K. The radius of the Sun
is 6.96x 108 m. Calculate the total energy radiated by the Sun each second.
Assume that the emissivity of the Sun is 0.965.

p = cAeT*

= (56696 %107 W/m’ -K4)[47z(6.96 x10° m)z}(0.965)(5 800 K)*

p=377%x10%6W
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Exercise 3

An ideal gas initially at 300 K undergoes an isobaric expansion at 2.50 kPa. If the
volume increases from 1.00 m3 to 3.00 m3 and 12.5 k] is transferred to the gas by
heat, what are (a) the change in its internal energy and (b) its final temperature?

AEin, = Q+ W
W = —PAV = —2.50 x 103 Pa (3.00 — 1.00)m3 = —5000]
AEin, = Q + W = 12500 — 5000 = 7500]

(b) The final temperature .
TI TZ
V. 3.00
T,=-2T, ==—(300K) =
2=y Too P00 K) =900k
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Exercise 4

One mole of an ideal gas does 3000 J of work on its surroundings as it expands
isothermally to a final pressure of 1.00 atm and final volume of 25.0 L. Determine
the initial volume.

8yl @ g ke waos dudosll Of s bV sl pasdl (sl Juams csis Jaidl pasiiws Bgaw
a3Vl oy Jidl 06 ales

V -
W = -nRTIn| L W
Vi w V; —— V.=Viexp| +——
— v,y PrVy
v Py Ve \
=-P,V,;In[ L )
o [V] = (0.025 0)exp 30\
w V; 0.0250(L013 x 10 )
Vi “P\pv;) TV, T
W= FrVyin <7f><— e _[0.00765 m?
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Exercise 5

In the Figure, the change in internal energy of a gas

that is taken from A to C along the blue path is+800]. P

The work done on the gas along the red path ABC is - A B
500 J. (a) How much energy must be added to the
system by heat as it goes from A through B to C? (b)
If the pressure at point A is five times that of point C,
what is the work done on the system in going from C
to D? (c) What is the energy exchanged with the
surroundings by heat as the gas goes from C to A
along the green path? (d) If the change in internal D C
energy in going from point D to point A is +500 J, V
how much energy must be added to the system by

heat as it goes from point C to point D?
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(a) How much energy must be added to the system by heat
as it goes from A through B to C? P

AEint apc = AEint a0 onbasdl (e @lpill s guss s dladl dass 4 B
AEint, apc = Qapc *Wapc
Qizc = 800] — (=500/)) = 1300]

(b) If the pressure at point A is five times that of point C, b o

what is the work done on the system in going from C to D? v
We have P,=5P, Wep =222222 AE i 4c = 800/
Wep = — PAV But, AV,; =—AV,, W 45c = —500]
1 1
Wep = < P,AV,p = < W45 Note:Wype = Wy +Wpge = Wyp
Wep = 100/ (+ means that work is done on the system)
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(c) What is the energy exchanged with the surroundings by
heat as the gas goes from C to A along the green path?

P
(€ Wepa=Wep  pazdl we aie o DA jluwoll (sle ddosll 0V 4 L
so that
Qca=AEppca — Weps = —800] — 100 ]= —900]
(— means that energy must be removed from the system by heat) b %

(d) If the change in internal energy in going from point Dtop . v

is +500 J, how much energy must be added to the system by heat adinc 4c = 800/
goes from point C to point 102, = 4E,,, ., —W,,

AEmt, cD :AEmt, CDA _AEI'm‘,DA:_‘gOO/ -500]=—-1300]
and WCD == 100/
Qep =4E;cp —Wep=—1300] — 100 ] = —1400] AEint‘ pa = 500/
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Engines, Refrigerators and the
second law of thermodynamics
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Unit 4: Engines, Refrigerators and the second law of thermodynamics

Lecture 19: Heat Engines and the Second Law of Thermodynamics

Unit 4: Engines, Refrigerators and the second law of thermodynamics

O Heat Engines and the Second Law of
Thermodynamics
Q Stirling engine
O Gasoline engine
O Heat Pumps and Refrigerators
O Reversible and Irreversible Processes
QO The Carnot Engine
0 Entropy and the Second Law
0 Entropy on a Microscopic Scale
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Goals for Unit ¢

« To learn what makes a process reversible or
irreversible

« To understand heat engines and their efficiency
« Tolearn how internal combustion engines operate

« To learn the operation of refrigerators and heat
engines

« To see how the second law of thermodynamics
limits the operations of heat engines and
refrigerators

e To do calculations with Carnot engines and
refrigerators

» To understand entropy and to use it to analyze
thermodynamic processes
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First Law of Thermodynamics — Review

O The first law is a statement of Conservation of Energy.

O The first law states that a change in internal energy in a system can occur as a result of
energy transfer by heat, by work, or by both.

O Only certain types of energy-conversion and energy-transfer processes actually take

place in nature.
Heat in Work out
ﬂ Eint \

AEint= Q+W
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Processes do not violate the first law, but never happened

OWhen two objects at different temperatures are placed High #Zﬁip
in thermal contact with each other, the net transfer of P
energy by heat is always from the warmer object to the = ogus8an, =T
cooler object, never from the cooler to the warmer. L " Heat

QA rubber ball dropped to the ground bounces several
times and eventually comes to rest, but a ball lying on
the ground never gathers internal energy from the
ground and begins bouncing on its own.

OAn oscillating pendulum eventually comes to rest. The
mechanical energy of the system is converted to internal

energy in the air, the pendulum, and the suspension; the (V=
reverse conversion of energy never occurs. :':\
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The Second Law of Thermodynamic

= Establishes which processes do occur and which do
not occur.

= This directionality is governed by the second law.

= These types of processes are irreversible.

= Anirreversible process is one that occurs naturally in
one direction only.

» Noirreversible process has been observed to run William Thomson, Lord Kelvin

backwards. » 1824 -1907 »
British physicist and mathematician

= An important engineering implication is the limited
efficiency of heat engines. His work in thermodynamics led to the
idea that energy cannot pass
spontaneously from a colder object to

a hotter object.
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Definitions

= The heat exchange between the system and the Hot source (T7,,)
hot reservoir (High temperature) is | Q|

= The heat exchange between the system and the
cold reservoir (Low temperature) is | Q; |

= The work exchange between the system and
surroundings is |W|

By Jsxll wadg 8ums)l i b @bl oloS)l gaos
e lpalsl vaxw paps ol e L) aallholl anusll go Jolew
Jalazoll
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Heat Engine

= If |Qyl is larger than |Q| and If |W| done by the system,
then the machine that cause the system to undergo the
cycle called a heat engine.

= A heat engine is a device that takes in energy by heat
and, operating in a cyclic process, expels a fraction of
that energy by means of work.

= Sinceitisa cyclical process, AE;,, = 0
= Therefore, [W| = [Qu| — Q.|

= The net work |IW| done by a heat engine equals the net
energy transferred to it.
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Thermal Efficiency of a Heat Engine

Thermal efficiency is defined as the ratio of the net work done by
the engine during one cycle to the energy input at the higher
temperature.

. work output
Thermal Ef ficiency = ———

heat input
Ll
|Qul
S (1 el P
|Qul |Qul

In practice, all heat engines expel only a fraction of the input
energy by mechanical work.

Therefore, their efficiency is always less than 100%. To have 1 =
100%, Q;, must be 0
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Engine
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Engine - 60
=70
- 80
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=100

Cold reservoir at T,

start reset

Perfect Heat Engine
(never exist)

It is impossible to construct
such an engine.
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Steam Engine

External Combustion
Engine

Stirling Engine

Gasoline Engine

Internal Combustion
Engine
Diesel Engine

Types of Heat engines
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Example 1

An engine transfers 2.00 x 10° ] of energy from a hot reservoir during a cycle and
transfers 1.50 x 10° J as exhaust to a cold reservoir.

= (A) Find the efficiency of the engine.

0.l . 1.50 X 10°]

n= 1-— m = W]O?‘J = 0250, or 25.0%
H .

= (B) How much work does this engine do in one cycle?

W] = 104] — Q] =2.00x10°] — 1.50 x 10°] = 5.0 x 10?]
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Problem to solve by yourself

* An engine absorbs 1.70 k] from a hot reservoir at 277°C and expels 1.20 k] to a
cold reservoir at 27°C in each cycle. (a) What is the engine’s efficiency? (b) How
much work is done by the engine in each cycle? (c) What is the power output of
the engine if each cycle lasts 0.300 s?

= A heat engine takes in 360 J of energy from a hot reservoir and performs 25.0 J
of work in each cycle. Find (a) the efficiency of the engine and (b) the energy
expelled to the cold reservoir in each cycle.

= A particular heat engine has a mechanical power output of 5.00 kW and an
efficiency of 25.0%. The engine expels 8.00x10° J of exhaust energy in each
cycle. Find (a) the energy taken in during each cycle and (b) the time interval
for each cycle.
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Stirling engine
Gasoline engine
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Unit 4: Engines, Refrigerators and the second law of thermodynamics

Lecture 20: Stirling engine

Unit 4: Engines, Refrigerators and the second law of thermodynamics

O Heat Engines and the Second Law of
Thermodynamics
Q Stirling engine
O Gasoline engine
O Heat Pumps and Refrigerators
0 Reversible and Irreversible Processes
QO The Carnot Engine
0 Entropy and the Second Law
0 Entropy on a Microscopic Scale

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net




11/25/2016

Stirling Engine

External Combustion
Engine

Gasoline Engine
Internal Combustion
Engine

Diesel Engine

Types of Heat engines
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e

Stirling Engine

External Combustion Engine /-
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Stirling engine

Q The Stirling engine was invented and
patented by Robert Stirling in 1816.

Q A Stirling engine is a heat engine that
operates by cyclic compression and
expansion of air at different temperatures,
such that there is a net conversion of heat
energy to mechanical work.
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IV oy wlS,=ell lussl )8
adlell aicleSy audyjmiw =0 jliong s>l
aalSs Sty pslall o i3 Sl el aldg
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Principle of Stirling Engine Operation
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Stirling Engine in Action
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Gasoline engine
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Unit 4: Engines, Refrigerators and the second law of thermodynamics

Lecture 21: Gasoline engine

Unit 4: Engines, Refrigerators and the second law of thermodynamics

O Heat Engines and the Second Law of
Thermodynamics
Q Stirling engine
O Gasoline engine
O Heat Pumps and Refrigerators
0 Reversible and Irreversible Processes
QO The Carnot Engine
0 Entropy and the Second Law
0 Entropy on a Microscopic Scale

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net



11/25/2016

Gasoline Engine

Internal Combustion Engine
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The intake valve
opens, and the air— e .

The piston moves fuel mix}u.re enters Intake A=V qb)b ( )| )
as the piston moves

up and compresses " Stroke

the mixture.
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The spark plug
The l}ﬂl gas pushes fires and ignites
the piston downward. the mixture. Ignition dlpul Clb).o (3)

Stroke
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The piston moves The exhaust valve
up and pushes the opens, and the
remaining gas out. residual gas escapes.

Exhaust psl)l al>,0 (6)
Stroke
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Gasoline Engine in Action
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Otto CYCIE The behavior of a gasoline engine can
be approximated by assuming a set of
ideal conditions

P Powerstroke - €D (1) The system is at all times air.
(2) All processes are quasi-static.
3) Thereis no friction.

: (4) There is no loss of heat through the
walls of the piston.

o .
" (5) The processes are reversible.
Va Vi
y ) These assumptions lead to idealized
cycle

e e Otto cycle plotted on a PV diagram.
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Otto Cycle

» Process o—1 intake stroke

= Process 2—3 ignition phase
= Process 3—4 expansion stroke

= Process 4—1 idealized heat rejection

» Process 1—o0 exhaust stroke —

-
>

\Y
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The Efficiency of Otto Cycle

O Process 5 — 1 represents intake stroke, the  Pressure P 4
volume of the piston varies from zero to V,
as the number of moles varies from zero to
n, according to the equation

PoV = nRT,

Q P, is the atmospheric pressure and T, is the
temperature of the air outside.

Volume ¥
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The Efficiency of Otto Cycle

O Process 1 — 2 represents adiabatic  PressureP 4
compression stroke. Temperature rise from
T,toT, according to the equation

vy =1nv]!

Q Process 2 — 3 isochoric increase of
temperature and pressure of n moles of air.
The system absorbed heat |Q4| and the
temperature increased fromT, to T,.

Volume V
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The Efficiency of Otto Cycle

O Process 3 — 4 represents adiabatic Power  Pressure P 4
stroke. Temperature rise from T, to T,
according to the equation

Q Process 4 — 1 isochoric decrease of
temperature and pressure of n moles of air.
The system reject heat |Q,| and the
temperature decrease from T4, to T,.

O Process 1 — 5 represents the exhaust
stroke, isobaric at atmospheric pressure.
Both V1 and n varies to zero.

Volume ¥
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The Efficiency of Otto Cycle

Q The isobaric processes 5 — 1 and 1 — 5 cancel each other.

O The remaining 4 processes only two involve a flow of heat. Absorption of |Q | in the
process 2 — 3, and rejection of |Q,| in the process 4 — 1

T Pressure P A
3

|Qu| = J CydT = Cy(T3 — Th)

T

Ty
!QL' = _I CydT = CV(T4 — Tl)

Ty

- [93 Ty —T 3 e
Q Thermal Efficiency n=1—-——==1— —+—— Volume
Q] T3 - T
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From the equation during the adiabatic processes I 0L i T,— T,
_ _ T, - T
v = Q] 3~ 12

1 ~1 T

T3V, = Tul] n=1-=

2

By division both equation
n T
T, T
Multiply by -1 both side and add ;—ito the right

side and add ?to the lift side
3

T, and T, are the temperatures at the
beginning and end of the compression
stroke.

Thermal efficiency of gasoline engine
working in Otto cycle depends on the
temperature  before = and  after
compression.

« If T, = 300K and T, = 580 K the
efficiency is 48%.

T,—T, T3-T
., 13

hh—T _Ts _nh * This is the optimum efficiency for ideal
-7, T: T, gasoline engine. The actual efficiency is

in the range of 20% to 30%.
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Problem to solve by yourself

= Show that the thermal efficiency of an engine operating in an idealized Otto
cycle is given by Equation .

= 1 -
’ (Vi) Vo)

* An engine absorbs 1.70 k] from a hot reservoir at 277°C and expels 1.20 k] to a
cold reservoir at 27°C in each cycle. (a) What is the engine’s efficiency? (b) How
much work is done by the engine in each cycle? (c) What is the power output of
the engine if each cycle lasts 0.300 s?

» A heat engine takes in 360 ] of energy from a hot reservoir and performs 25.0 J
of work in each cycle. Find (a) the etficiency of the engine and (b) the energy
expelled to the cold reservoir in each cycle.
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Heat Pumps and Refrigerators
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Unit 4: Engines, Refrigerators and the second law of thermodynamics

Lecture 22: Heat Pumps and Refrigerators

Unit 4: Engines, Refrigerators and the second law of thermodynamics

O Heat Engines and the Second Law of
Thermodynamics

O Stirling engine COMPRESSOR

O Gasoline engine

O Heat Pumps and Refrigerators

O Reversible and Irreversible Processes
O The Carnot Engine
QO Entropy and the Second Law

0 Entropy on a Microscopic Scale

OUTDOOR COILS INDOOR COILS
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Heat Engine, review

The heat engine is a machine that takes a working substance through a cycle in such a sequence
of processes that some heat is absorbed by the system from a high-temperature heat reservoir, a
smaller amount of heat is rejected to a low-temperature heat reservoir, and the a net amount of

work is done by the system on the surrounding.
Hot reservoir

All heat engines have: Boler Th
* Working substance \ T ——,
. . Ty ] Q
» High-temperature reservoir [ vater " |} h
* Low-temperature reservoir
*+  Cyclical engine O e w
Pump 4«(% Engine =l
What if we wanted to B -
transfer energy from
the cold reservoir to " Condenser | Q

the hot reservoir? | \ i

| -— / 2
; —Y‘ Cold reservoir
Q. Tc
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Heat Pump or Refrigerator

Refrigerator is a machine perform a cycle of sequence of processes
opposite to the heat engine, i.e. some heat is absorbed by the

system from a heat reservoir at a low temperature, a larger amount Hot reseryoit
of heat is rejected to a heat reservoir at a high temperature and a net "
amount of work is done on the system. Q,

Refrigerant powl @Ml a8 il 35000 posy Sl pladl socuug
W

|Qy| represents the amount of heat rejected by the refrigerant Heat pump IO
to the high-temperature reservoir

|Q.| represents the amount of heat absorbed by the Qe ‘

refrigerant from the low-temperature reservoir U

|W| represents the net work done on the refrigerant by the
surrounding
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Refrigerator Cycle (Sterling Refrigerator)
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Coefficient of Performance a>Ml ;wyl Joloo

Q The effectiveness of a heat pump is described in terms of a number called the coefficient of
performance (COP). In the heating mode, the COP is defined as the ratio of the energy transferred to
the hot reservoir to the work required to transfer that energy:

energy transferred at high temperature

COP =
work done by the heat bump
) O 0F Because Qy is generally greater
COP (heating mode) = W = W than W, typical values for the
H L

COP are greater than unity.

0 For a heat pump operating in the cooling mode, we define the COP in terms of Q;:
__heat absorbed from cold reservoir

COP =
work done on refrigerant
. Q; o A good refrigerator should
COP (cooling mode) = w> Qn —Q, have a high COP, typically 5 or
6

Dr. Hazem Falah Sakeek || www.physicsacademy.org || www.hazemsakeek.net 9

Example 1

If the coefficient of performance of a refrigerator is 5 find the ratio of the heat rejected to
the work done on the refrigerant.

QL
= — = and = - W
COP W 5 QL =0y
Qu—-W
m =5
9 _q = Qu = 6W
w

Mool iy Jad Jo> 1 JS Jlio @l sy 1igd «siliyeS algo JUS oo Josi du,lymdl @seiandl wolS 13l
JailiSew 8 Wiio @ida) 1852 (58 (alS pllall l>,b 8,Se)l o .éu,l,mdl @lall oo Jg=> 6,y
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Home Refrigerator aJjioJl a>\Jl
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Pressure P wle adsinll Ml (9 vyl e blaadl JSoidl iy
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